1. Introduction
Hydrofluorocarbon (HFC) concentrations in the atmosphere have increased rapidly since
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5. Results from CCMs (3-D)
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Are the responses similar or different between the 2-D model and our 3-D models?

5-4. Residual mean circulation response (zonal mean, annual mean, 100-member ensemble mean)
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set to twice or three times the 2050 concentrations of Hurwitz et al. (2015).

increase are different.

6. Concluding Remarks

(1)T
(2)T
(3)T

ne estimated impact of HFCs on total ozone was small, at most 1% (4.2 DU) for MIROC3.2-CCM and 0.3% (1.2 DU) for MIROC5-CCM. In both cases, the net global effect was positive.
ne small magnitude of the total ozone response is caused by the altitude-dependent, alternately negative and positive ozone responses.

ne observed alternating anomaly pattern can reasonably be explained by competing effects of residual vertical motion anomalies in the lower and middle stratosphere, and temperature

anomalies in the upper stratosphere.
(4)Large differences were observed at high latitudes, notably in the NH polar region, not only between the 2-D and 3-D simulations but between the 3-D models themselves. These discrepancies
were attributed to differences in wave activity during winter.
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