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A machine learned
weather forecast for Norway

Thomas Nipen (MET /Norway)
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13 Users expect high resolution forecasts
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Temperature (°C)

&2 Users expect up-to-date forecasts

New forecasts issued every hour as new observations become available
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3 Predictors

e High resolution NWP ensemble (2.5 km)
e Hourly output for 59 hours

e Predictors:

2m temperature (ensemble control)
2m temperature (ensemble 10%)
2 temperature (ensemble 90%)
1h precipitation accumulation
Cloud cover
10m wind (x-component)
10m wind (y-component)

tadata variables:
Model altitude
Model land area fraction
“Real” altitude (1x1 km)
“Real” land area fraction (1x1 km)
Model x-coordinate
Model y-coordinate
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i Target data

e Challenge to assemble an accurate target at high
resolution
e Conventional observation networks are too
sparse (at least in the Nordics)
e Citizen observations are an emerging data source
(50-100x increase compared to SYNOP network)
e Target field based on:
o  Citizen observations
o Early lead times (3-9h) from NWP
o Combined using optimal interpolation (Ol)
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&) Gridded truths as input predictors

g)&“ﬁé\ Temperature increased by 3‘fC
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e Target fields for the 24h leading up to
prediction also used as input predictors

e Allows us to keep forecasts up to date with
recent observations

e NWP bias (target - NWP) used as predictor




% Prediction problem

Input data (6 terabytes)

e 1x1 km downscaled NWP and recent biases
® 059x2321x1796x17
e 700 samples (2 years)

Output
leadtime=59

e 1x1 km temperature forecasts
® 59x2321x1796x3(10, 50, 90% quantile levels)

Target data
%
e 1x1 km gridded truth AN
® 59x2321x1796
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i) Loss function

Example for quantile level = 0.9

A

Quantile score

Forecast error (y - q)

Quantile scoring function is used to evaluate quantile forecasts (10, 50, 90% )

Quantile score

QS-(y.9) = {(y —<yCI>_<Tq>—T 1) z < :

7 : quantile level
1y : observation
q : quantile
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i U-Net

® 2D U-Net, all leadtimes trained together (leadtime added as a predictor)

1,314,019 trainable parameters

Input Output
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T U-Net

2D U-Net, all leadtimes trained together (leadtime added as a predictor)

1,314,019 trainable parameters
Trained on 4 NVIDIA A-100 GPUs, 2x24 cores AMD EPYC 7402, 512GB RAM
Extensive optimization of processing performance and memory footprint

Input Output
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3 Optimizing the data loader

e We needed a data loader that:
o Streames data from disk (6TB too large for memory)
o Doesn't cause an I/O bottleneck
o Can read data as we have them stored on our systems (i.e. reusable in other applications)
o Allows loading options to be easily changed

Normalization

Expand
Features
Patching
Training

Ditf

©
Disk z§

NIFCRGICELEC 10GB =< —+t7——— 335s —————> 8.1s

& X J
Y Y

CPU GPU
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) Optimizing the data loader

We needed a data loader that:
o Streames data from disk (6TB too large for memory)
o Doesn't cause an I/O bottleneck
o Can read data as we have them stored on our systems (i.e. reusable in other applications)
o Allows loading options to be easily changed

Normalization

Expand
Features
Patching
Training

Ditf

©
Disk é

Single threaded PliX¢]:] 33.5s ———> 8.
Each step run in parallel m <«<— 175s —> 8.1s
48 threads split across steps K]z} 75s 8.1s
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t) Verification

e 1 year training period, 1 year testing period
® Bias variables are important contributors to overall skill of forecast
® Precip/winds/clouds also have a (small) positive effect
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1) Verification

1 year training period, 1 year testing period

Bias variables are important contributors to overall skill of forecast
Precip/winds/clouds also have a (small) positive effect

10 and 90% quantiles are much more reliable
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%1 Verification

e Other properties not captured by the loss function:
o  Daily min/max 07

0.81 —e— U-Net
—e— Elev corrected NWP

o  Sharp temporal changes
o  Spatial consistency (users comparing different locations)

MAE 24h max (C)
o
IS

® So far, these metrics also look promising
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%) Summary

e The MAELSTROM project has contributed to:

o Development of an ML solution for forecasting temperature suitable for the general public
o  Optimization of the training pipeline by exploiting the available hardware
o Development of a high-resolution benchmarking dataset for testing new ML methods

Links:

o  Forecast site: www.yr.no

o  Data access via climetlab: https://github.com/metno/maelstrom-yr

o Jupyter notebooks: https://gitlab.jsc.fz-juelich.de/esde/training/maelstrom_bootcamp (AP1)
o  Contact: Thomas Nipen (thomasn@met.no)

COMPUTER orschungszentru
ENGINEERING LUXEMBOURG

.o Norwegian : i
_c ECMWF §_4_._ mzurich ‘J :JULICl'r! oy mzitiet?]r&loglcol !!!!!S;!!!

This presentation reflects the views only of the author, and the European High-Performance Computing Joint Undertaking or Commission cannot be
held responsible for any use which may be made of the information contained therein.
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¥\ Loss function

Quantile scoring function is used to evaluate quantile forecasts (10, 50, 90% )
Convolve the forecast error with the target uncertainty
e Developed a computationally efficient approximation

Quantile score

QS-(y.9) = {(y —@CI)_(Tq)—T 1) z < :

Example for quantile level = 0.9

>
y'q, o)

7 : quantile level

N— 1y : observation
$-¢ q : quantile

Quantile score (uncertain target)

+00 T
QST(y7 q, 0) = QS’T(y - T, Q)Cb (_) dx
> o0 7
Forecast error (y - q) QS (1, 0,0) = QS.(y, q) + 0.40'6144%7[1'

A
Quantile score




#5 Average pooling

® Improvements also found in
U-Net in MAELSTROM
application 5

Original field

Temperature

Precipitation

Clouds

X-wind

Max pooling
(32x32)

Mean pooling

(32x32)




¢f5 Leaky RelU

e Standard RelU activation disabled the layers in the U-Net due to dead RelLU nodes.
® Discovered through visualizing the tensors as they pass through the network

Input layer
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