THE DYNAMICS OF ATMOSPHERIC RIVERS

Helen Dacre ${ }^{1}$, Oscar Martinez-Alvarado², Kevin Hodges ${ }^{1,2}$, Cheikh Mbengue ${ }^{3}$

1. University of Reading, 2. National Centre Atmospheric Science, 3. University of Oxford

AIM: To describe the dynamics of atmospheric rivers

- Intro to atmospheric airflows - case study
- Calculating moisture budgets - case study
- Composite airflows and moisture budgets
- Sensitivity of precipitation and IVT to atmospheric moisture
- Estimating precipitation efficiencies

CASE STUDY: 31 JAN 2002

** University of \& Reading

Track of storm and position relative to maximum intensity

Dacre et al. (2015), BAMS

ERA-Interim TCWV
925 hPa Earth-relative winds (vectors)
18 UTC 31 Jan 2002

FOCUS ON ATMOSPHERIC RIVER

Track of storm and position relative to maximum intensity

ERA-Interim TCWV
925 hPa Earth-relative winds (vectors)
18 UTC 31 Jan 2002

- Móstưre in the "tail" of the AR is moving too slowly to catch up with the storm centre

WHAT CAUSES FILAMENTS OF TCWV?

$$
\frac{1}{g} \int_{p_{500}}^{p_{s}} \frac{\partial q}{\partial t} d p=E-P+\frac{1}{g} \int_{p_{500}}^{p_{S}} \nabla \cdot(q u) d p
$$

$$
\begin{array}{cccc}
\text { Vertically integrated } & \text { Surface } & \text { Surface } & \text { Vertically integrated } \\
\text { rate of change of } & \text { evaporation } & \text { precipitation } & \text { moisture flux } \\
\text { water vapour } & \text { flux } & \text { flux } & \text { convergence }
\end{array}
$$

- Calculate each term in the water vapour budget equation for each gridbox column within the storm

STORM MOISTURE BUDGET TERMS

IVT $=500 \mathrm{~kg} / \mathrm{m} / \mathrm{s}$

- The extension of the AR from the subtropics is due to MFC ahead of the storm cold front
- The storm sweeps up moisture in the environment as it moves

Dacre at al. 2015

STORM TRACKS VARY IN DIRECTION

Tracks of 200 intense storms in 1990-2008 DJF

Dacre et al. (2012), BAMS

1. Extract fields from ERA-I along storm tracks within 1500 km radius surrounding the cyclone position
2. Rotate storm centred fields so travel is left to right
3. Composite 200 intense storms at times relative to max intensity

COMPOSITE AIRFLOWS

Composite storm-centred fields 24 hours prior to time of maximum intensity

TCWV (filled contours), Precipitation (blue),
Evaporation (orange), $925 \mathrm{hPa} \theta_{\mathrm{e}}$ (black dashed)

Pressure in hPa (contours) and stormrelative winds on $285 \mathrm{~K} \theta$ surface

Schematic of storm-relative airflows overlaid on surface features

Precipitation (dark blue), high TCWV (light blue), Warm conveyor belt (red), Dry intrusion (yellow), Feeder airstream (green)

SOUTHERN OCEAN STORM TRACKS

Tracks of 400 intense extratropical storms in ERA5 between March-September 1979-2021

Cyclone motion \qquad IVT $=250 \mathrm{~kg} / \mathrm{m} / \mathrm{s}$

Southern Ocean storm composites

- Composite moisture terms very similar to case study
- Moisture accumulation at leading edge of AR caused by storm sweeping up moisture in environment

QUANTIFYING RELATIONSHIP BETWEEN PRECIP AND TCWV 24HRS EARLIER

Ensemble sensitivity at each point in the domain, $\mathrm{S}_{\mathrm{i}, \mathrm{j}}$, is calculated using lagged linear regression

AR IVT IS RELATED TO DOWNSTREAM TCWV 24HRS EARLIER

Composite TCWV at T-48 (contours) and sensitivity of IVT ($\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-1}$) at T-24 to TCWV at T-48
storm motion

Pressure in hPa (contours) and storm-relative winds (vectors) on $285 \mathrm{~K} \theta$ surface at T-48

- A sensitivity value of $100 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}=1$ std dev increase in background TCWV there is a corresponding increase in total IVT of $100 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$

CYCLONE PRECIPITATION IS RELATED TO DOWNSTREAM TCWV 24HRS EARLIER

Composite sensitivity of precipitation $\left(\mathrm{kg} \mathrm{m}^{-2}\right)$ at max intensity to TCWV 24 hrs earlier
storm motion

Pressure in hPa (contours) and cyclone-relative winds (vectors) on $285 \mathrm{~K} \theta$ surface at T-24

- Storm precipitation is sensitive to TCWV in the environment ahead of the storm 24 hours earlier

PRECIPITATION EFFICIENCY

- Precipitation efficiency is the amount of water that is lost from the atmosphere through precipitation compared to the available water vapour in the atmosphere
- Precipitation efficiency highest -55\%/6hrs close to the storm centre

Precipitation Efficiency (\%/6hrs) at T-24

$$
P E=\frac{P_{t}}{T C W V_{t-6}}
$$

Evaporation Efficiency (\%/6hrs) at T-24

$$
E E=\frac{E_{t}}{T C W V_{t-6}}
$$

Moisture Flux Convergence Efficiency (\%/6hrs) at T-24

$$
M F C E=\frac{M F C_{t}}{T C W V_{t-6}}
$$

- Moisture flux convergence efficiency $50 \% / 6 h r s$ replenishes moisture lost via precip

HOW QUICKLY DO STORMS DRY OUT?

Accumulated storm moisture

$$
\frac{\sum_{t=t_{0}}^{P D} \int_{0}^{r} P_{t} d r}{\int_{0}^{r} T C W V_{t_{0}} d r}=-100 \%
$$

(a) 500 km radius

$$
\int_{0}^{r} T C W V_{t_{0}} d r
$$

- The initial moisture content of storms is lost 24-36 hours after cyclogenesis
- Local evaporation and moisture flux convergence doubles the precipitating phase of storms

CONCLUSIONS

Q. Where does the moisture replenishing the storm come from?

- The feeder airstream provides a continuous supply of moisture to storms in their developing stage
- Moisture ahead of the storm converges along the cold front as it is swept up by the moving storm forming a filament of high TCWV

Q. How long would it take to deplete all a storm's initial moisture via precipitation?
- The initial moisture content is removed via precipitation within 30 hours
- Local evaporation and moisture flux convergence doubles the precipitating phase of storms
- Does IVT skill peak after 72 hours because evaporation beneath the DI of previous cyclone preconditions the atmosphere for subsequent cyclone?
- Is the increase in skill for successive IOPs because the initial condition of the environment for subsequent cyclones develop is improving?
- Could impact of buoys and dropsondes on the forecast be performed relative to the AR feature to reduce the random errors and systematic geographical errors?

EXTRA SLIDES

\section*{HOW QUICKLY DO CYCLONES DRY OUT? | Mineaifog |
| :--- |
| Reading |}

- Moisture is exported out of the cyclone as it travels
- This moisture forms the filament that is left behind by the poleward travelling cyclone indicating it's path

