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Nonlinear model provides a 

trajectory of model state from 

initialization x0 to the forecast state xf.

Tangent linear model evolves 

perturbations to the initial state, 

linearized about nonlinear trajectory.
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Adjoint is transpose of the TLM, and 

evolves the gradient of a response 

function (J) with respect to xf
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See:  Errico (1997); Langland et al. (1995); Amerault et al. (2008); Doyle et al. (2014, 2019)

Sensitivity of forecast aspect to changes in initial 

state, and highlights regions of large initial sensitivity.

Adjoint Sensitivity

COAMPS® Moist Adjoint Model

• Dynamics: Nonhydrostatic (30 km resolution)

• Physics: PBL, surface flux, microphysics, cumulus

• Response Functions, J: Precip (others snow, IVT, KE, PV, SST)

• Optimal Perturbations: ~1 K, 1 m s-1, 1 g kg-1

Growth Rate
9-10 Jan 2015 (Storm Nina) (36 to 0 h)



3

Adjoint Sensitivity and Forecast Errors
Low-Level Wind Forecast Error vs. Initial Vertically Integrated Moisture Sensitivity

N. Atlantic (Sep-Oct 2016):  Corr.=0.7

36h Forecasts

• Sensitivity magnitude (domain-vertically integrated) & low-level kinetic energy forecast error are well correlated for 

multiple regions:  N. Atlantic (Doyle et al. 2019), U.S. W. Coast (Reynolds et al. 2019), Arctic

Doyle et al. (2019)

U.S. W. Coast (Jan-Feb 2017):  Corr.=0.67

36-h forecasts

Reynolds et al. (2019)

Arctic (Aug 2018):  Corr.=0.6

72-h Forecasts
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Optimization Time

How Does the Sensitivity Vary with Optimization Time?
36-h Optimization Time 60-h Optimization Time

• Typical optimization times used for the COAMPS adjoint is 36-h during AR-Recon

• Longer optimization times result in sensitivity that is further upstream and difficult for aircraft to reach

Precipitation Response Function

Initial:  00Z 27 Jan. 2021Final:  12Z 28 Jan. 2021

Precipitation Response Function

Initial:  00Z 26 Jan. 2021Final:  12Z 28 Jan. 2021
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NRL Adjoint Sensitivity Summary Graphic

IVT Vectors (250/500)

500-hPa Height (gray)

Response Function

Vertically Integrated

Sensitivity:

|q| (blue shading)

|u|+|v| (red contours)

|PV| (stipple)

(moderate/strong)

• Adjoint sensitivity provided to the AR-Recon team in 2023 from late Dec through late March

• Adaptive response function region moved daily to support different areas (W. Coast, E. Coast …)   

• Response functions used in 2023:  accumulated precipitation, accumulated snow, IVT
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Adjoint Sensitivity (AR Recon 2023)

• Based on past experience in AR-Recon and NAWDEX, precipitation perturbation growth (in non-linear model 

over a 36-h integration) are between 20-30 for strong cases (rarely above 30 previously)

• 8 events greater than 30 in 2023 (precipitation only)

ARs &

Strong Jet
AR &

Midwest Flooding

ARs &

Strong Dynamics
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Adjoint Sensitivity: Jan. 6 (IOP 6)

• Exceptionally strong jet and AR across the Pacific

• Extreme growth rate (36-h sensitivity)

• Strong sensitivity near shortwave troughs (PV) in 

AR core and on cold-side near the strong dynamics

250-hPa winds (m s-1), MSLP, 

1000-500 hPa thickness (00Z 6 Jan.) 

IVT and Dropsondes (00Z 6 Jan.)

24-h Precip. (12Z Jan 6)

Alicia Bentley
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Adjoint Sensitivity: Jan. 7 (IOP 7)

• Exceptionally strong jet and AR across the Pacific

• Extreme growth rate (36-h sensitivity)

• Two prominent upstream sensitivity regions along AR 

(western sensitive region propagates ~38 m s-1)

250-hPa winds (m s-1), MSLP, 

1000-500 hPa thickness (00Z 7 Jan.) 

IVT and Dropsondes (00Z 7Jan.)

24-h Precip. (12Z Jan 8)

Alicia Bentley
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Adjoint Sensitivity: Jan. 13 (IOP 13)

• Weaker jet along CA; AR directed from sub-tropics

• Moderate growth rate (36-h sensitivity)

• Sensitivity in AR inflow and upstream in next AR

250-hPa winds (m s-1), MSLP, 

1000-500 hPa thickness (00Z 10 Mar.) 

IVT and Dropsondes (00Z 13 Jan.)

Alicia Bentley

24-h Precip. (12Z Jan. 14)
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NLM Energy Budget (Domain Average)
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Adjoint Optimal Perturbation Energetics

January 6 (0h) January 13 (0h) January 6 (36h) January 13 (36h)

• Comparison of Jan. 6 (growth rate 65) and Jan. 13 (growth rate of 15) cases

• Energy peaks in mid-levels at initial time, and grows rapidly in the vertical on Jan. 6 (much slower growth Jan 13) 

• Jan. 6 shows much more rapid perturbation growth in NLM at jet level than Jan. 13 
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Adjoint Sensitivity: March 21

• Strong dynamic system made landfall along the Central California Coast and was a significant forecast challenge

• Multiple vortices along a bent-back warm (or occluded) front leading to extensive damage in Santa Cruz Mtns.

Dan Stern (UCAR)
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60-108-h Perturbation  Precipitation (mm)

50 mm/48 h

Enhancement

High-Impact 

Precip. Event

> 130 mm/72 h

North Atlantic Example:  NAWDEX
COAMPS 48-h SLP and 850-hPa Winds

• 48-h sensitivity initialized at 12Z 24 Sep

• KE response function over WCB LLJ

48-h 850-hPa Optimal U’+U

Evolved optimal perturbations lead to a 

strengthened WCB to > 40 m s-1at 850 hPa

72-h Pressure at 12-km, Optimal P’

SHOUT (NOAA Sensing Hazards with Operational Unmanned Technology)

NAWDEX North Atlantic Waveguide and Downstream Impact Experiment

850-hPa qv Sensitivity, Heights, & Winds

Large qv sensitivity NE of Karl in moist plume

NASA Global

Hawk Track (SHOUT)

72-h Precip.

00Z 30 Sep.

NASA IMERG

>130 mm

ET of ex-Karl

i) Strong moisture sensitivity 

near Karl prior to ET 

ii) Vorticity sensitivity in 

upstream trough and near 

TC

Adjoint Pert.:

i) Enhancement of WCB by 

20 ms-1 & IVT

ii) Increase WCB outflow 

(increase irrotational

winds   9 to 15 m s-1)

iii) Downstream ridge 

building 

iv) High-impact precipitation 

and atmos. river event

AR/WCB acts as “Amplifier”
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Summary
• Adjoint-based systems are powerful tools that can be used for 

predictability and data assimilation applications

➢ Sensitivity analysis

➢ Targeted observations

➢ Singular vectors

➢ Predictability 

➢ Parameter estimation 

➢ Forecast sensitivity observation impact (FSOI) 

• Adjoint Sensitivity in ARs

➢ Sensitive regions of moisture & temperature often strongly project onto 

diabatically-active areas (ARs & WCBs) leading to fast perturbation & 

forecast error growth (sensitivity correlated with forecast errors)

➢Rapid growth associated with strong jets, moist baroclinic zones, and ARs

• Future Plans

➢Understand the predictability barriers associated with ARs

➢ Explore upstream and inflow characteristics of ARs, and air-sea 

interaction and boundary layer influences on AR moisture sources
Stone et al. (2020)
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Extra Slides
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Response Function Regions

• Larger boxes are better to make sure the sensitivity represents an increase within box (and not a shifts)

• Every adjoint sensitivity run, we make sure the adjoint/TLM is valid by comparing evolved perturbations in 

NLM (color) and TLM (contours) and the perturbations increase the precipitation

• Growth of the perturbation precipitation is an indicator of how sensitive a forecast is.

24-h Precipitation (mm) 24-h Precipitation Pert. from NLM and TLM (mm)
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• High-impact forecasts associated with ARs can be very sensitive to the initial state, even for short-range forecasts

• We focus on a high-impact event during the AR Recon from Feb. 11-15, 2019 and utilize the NRL COAMPS®

mesoscale model and moist adjoint system to explore the predictability of this heavy precipitation event.

• Goal is to quantify the predictability of this heavy precipitation event (Feb. 2019) along U.S. West Coast that 

featured an AR, Tropical Moisture Export (TME), Kona Low, and PV streamer

• How do multi-scale dynamics:  PV Streamer, Kona Low, Tropical Moisture Export (TME), and AR impact the 

predictability of the downstream heavy precipitation in California?

Tropical 

Moisture Export

AR

Kona Low

320K PV; IVT; 850-mb Rel. Vort.

00Z 13 Feb. 2019

700-hPa qv Sensitivity (red/blue), 

IVT (gray), 700-hPa Heights, Winds

00Z 12 Feb. 2019

300-hPa PV Adjoint Perturbation,         

PV (gray), 300-hPa Heights, Winds

00Z 12 Feb. 2019

Kona Low

AR

TME

Response

Function
Precip.

>200mm   

/48h

Multi-Scale Sensitivity:  Valentine’s Day 2019
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Atmospheric Rivers:  AR Recon

• AR Recon is a multi-agency effort to to improve short-term AR forecasts on the U.S. West Coast 

• NRL COAMPS adjoint sensitivity was used along with other products to inform flight plans. Sensitivity typically 

highlighted lower-tropospheric moisture in/near ARs and Warm Conveyor Belts (WCBs)

• High-impact event exhibiting large model forecast differences. Adjoint showed sensitivity to all three features

- Kona Low, tropical moisture export (ascending WCB), PV streamer, and phasing of PV anomalies

320K PV; IVT 850-hPa Relative Vorticity 

00Z 13 Feb. 2019

Valentine’s Day Flooding Event

February 2019

Tropical 

Moisture Export

AR

Kona Low
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COAMPS 24-h Observation Impacts 
Moist Energy Error Norm

COAMPS 24 h Observation Impacts 00Z 13 Feb. 2019
AR Recon Dropsondes Buoys and Ships

AR Recon Dropsondes are the 

most beneficial  in situ profile 

observation (per observation and 

overall for the 11 & 13 Feb. IOPs)

Feb 8-14

Feb 8-14
00Z Feb. 11

00Z Feb. 13

Observation Impact: Valentine’s Day 2019

00Z Feb. 11

00Z Feb. 13
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Lead Time
How Does the Sensitivity Vary with Lead Time

48-h Lead Time 0-h Lead Time

• Some difference in the sensitivity details due to the lead time used, but overall pattern similar
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Adjoint Sensitivity: Jan. 6 (IOP 6)

• Exceptionally strong jet and AR across the Pacific

• Extreme growth rate (36-h sensitivity)

• Strong sensitivity near shortwave troughs (PV) in 

AR core and on cold-side near the strong dynamics
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Adjoint Sensitivity: Jan. 8 (IOP 8)

• Exceptionally strong jet and AR across the Pacific

• Strong growth rate (60-h sensitivity)

• Sensitivity located well upstream of West Coast
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Adjoint Sensitivity: Jan. 9 (IOP 9)

• Exceptionally strong jet and AR across the Pacific

• Moderate growth rate (36-h sensitivity)

• Sensitivity concentrated in AR and extending 

upstream into the next AR and shortwave
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Adjoint Sensitivity: Jan. 11 (IOP 11)

• Exceptionally strong jet and AR across the Pacific

• Extreme growth rate (48-h sensitivity, 36-h RF)

• Sensitivity concentrated in AR and extends 

upstream ahead of the next AR and shortwave

250-hPa winds (m s-1), MSLP, 

1000-500 hPa thickness (00Z 9 Jan.) 

Alicia Bentley

IVT and Dropsondes (00Z 11 Jan.)

24-h Precip. (12Z Jan 12)
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Adjoint Sensitivity: Mar. 10 (IOP 36)

• Strong jet and AR directed from sub-tropics

• Extreme growth rate (36-h sensitivity)

• Sensitivity concentrated in AR core and in the 

strong shortwave trough along the NW coast

250-hPa winds (m s-1), MSLP, 

1000-500 hPa thickness (00Z 10 Mar.) 

IVT and Dropsondes (00Z 10 Mar.)

24-h Precip. (12Z Mar. 11)
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COAMPS Adjoint Sensitivity Summary Graphic

Adjoint Summary Graphic

IVT Vectors (250/500)

500-hPa Height (gray)

Response Function

Vertically Integrated

Sensitivity:

|q| (blue shading)

|u|+|v| (red contours)

|PV| (stipple)

(moderate/strong)

Growth Metric


