NAWDIC Workshop discussing international coordination 30 June 2023 – ECMWF, Reading

Welcome!

www.kit.edu

9:00-10:50	Welcome and NAWDIC overview talks		
10:50 – 11:20	Coffee break		
11:20 – 12:30	Breakout Groups		
12:30 – 14:00	Lunch		
14:00 – 15:20	Case Study		
15:20 – 15:45	Breakout Group Report and Closing Discussion		

Scientific idea and goals

Focus on high-impact weather related to frontal systems of extratropical cyclones in the North Atlantic – Euro – Mediterranean region in winter

Scenario 1: wind gusts related to cold frontal passage and cold sector

Scenario 2: heavy precipitation related to atmospheric river landfall

stream

Institute of Meteorology and Climate Research (IMK-TRO)

Scientific idea and goals

- Focus on high-impact weather related to frontal systems of extratropical cyclones in the North Atlantic – Euro – Mediterranean region in winter
- NAWDIC aims to advance our understanding of the synoptic- to micro-scale dynamical and physical processes associated with the triggering of severe wind gusts, heavy precipitation, and cold air outbreaks in the North Atlantic-Euro-Mediterranean region and of their representation in NWP models.

Karlsruhe Institute of Technology

Seamless Observation Strategy – NAWDIC components

NAWDIC observations will be made across multiple scales using airborne and ground-based observations complemented by a seamless modelling component incl. data assimilation

Long-range aircraft (HALO / NASA / NOAA?)

Sample tropopause structure, DI-PBL interaction, and moisture uptake & transport with remote sensing instruments/dropsondes

Mid-range aircraft (ATR42/UK FAAM/US-C130)

DI-PBL and ocean-atmosphere interaction in areas related to HIW

Ground-based observations

Dense observation network along the European coastline: **KITcube** supersite + FR mobile radars + UK radars, wind profilers, lidars + NO lidar

Deutsches Zentrum

NAWDIC-HALO and NAWDIC-KITcube: Seamless observation strategy from synoptic- to micro-scale

Christian M. Grams¹, Julian F. Quinting¹, Annika Oertel¹, Alexandre Ramos¹,

Shira Raveh-Rubin², Andreas Schäfler³, Peter Knippertz¹, George Craig⁴, and Volkmar Wirth⁵ ¹Karlsruhe Institute of Technology, ²Weizmann Institute of Science, ³Deutsches Zentrum für Luft- und Raumfahrt, ⁴Ludwig-Maximilians University Munich, ⁵Johannes Gutenberg University Mainz

www.kit.edu

NAWDIC-HALO and NAWDIC-KITcube deployment

- Iocal KITcube supersite and / or ground array will allow
 - detailed and high-frequent observations of local weather, in particular wind gusts and change of air-mass characteristics during cold frontal / DI passage.
 - realtime high-resolution data assimilation in collaboration with German Weather Service DWD
- Long-range flights with HALO will allow
 - observations of DI-PBL interaction in the AR moisture source regions as well as of the interaction with DIs affecting HIW over Europe (→ moisture transport, moisture uptake and winds)
 - detailed observations of the mesoscale tropopause structure in remote DI origin areas over the North Atlantic and a quasi-Lagrangian tracking of the descending DI air masses (→ trace gas gradients and wind gradients)

NAWDIC Workshop, ECMWF

Institute of Meteorology and Climate Research (IMK-TRO)

Seamless observation strategy combining HALO and KITcube

HALO Area of Operation: North Atlantic

- HALO likely based in Ireland
- KITcube: French Coastline
 - supersite at Atlantic Coast or Mediterranean
 - coordinated with mobile French facilities
- Time period: *Winter*
 - 6 weeks in January February 2026
 - storm track activity maximal in winter

TP structure DI-PBL interaction moisture uptake

moisture transport / lower level winds

NAWDIC-KITcube - deployment

https://www.imk-tro.kit.edu/7858.php

- Iocal measurements at a supersite and / or observational array
- key instruments:
 - Cloud, X-, and K-band radars
 - 5 Doppler-Lidars (wind)
 - Microwave radiometers (q, T profiler)
 - Ceilometer, Autolauncher radiosoundings, ...
- area: French Coastline
 - supersite at Atlantic Coast
 - coordinated with mobile French facilities
- Time period: *Winter 2025/26*
 - can be operated remotely in extended winter
 - pre-campaign envisioned in winter 2024/25

HIW ground-based observations

High wind situations with DI interaction

(a) Satellite and SYNOP observations

(b) Lidar observations

Pantillon et al. 2018, Adv. Sci. Res.,

Heavy precipitation in AR-type flow

Pantillon et al. 2020, MWR

NAWDIC:

- Validate the PBL structure and mesoscale circulation systems (wind, humidity, moisture transport) and the transition from marine to continental PBL in NWP models
- Flow-dependent impact of meso-scale data assimilation

A. Schäfler, DLR Institute of Atmospheric Physics, May 12 2023

NAWDIC-HALO instrumentation (in discussion)

- SHARC
- turbulence

Remote sensing:

- KITsonde
- DIAL lidar (WALES)
- WIND lidar

In-situ instruments

- SpecMACS
- UMAQS
- FISH
- FAIRO

Instrument	Parameter	Institution	PI
KITsonde	U, V, W, T, RH	KIT	Wieser
WALES	H2O/O3	DLR	Wirth
1.6 mu Wind Lidar	U, V, W	DLR	Witschas
SpecMACS	cloud structure	LMU	Mayer/Zinner
UMAQS	CO, N2O,	U Mainz	Hoor
FISH	H2O	FZ Jülich	Krämer/Rolf
FAIRO	03	КІТ	Zahn

Interaction of DI with PBL

Collocated observations of H₂O and horizontal wind

NAWDIC:

- Combined H₂O and wind observations from lidar and dropsondes
- Systematic errors of moisture transport in ARs (Lavers et al. 2018)
 → uncertainties in lowlevel winds (Sandu et al. 2020) or moisture?
- Observation impact studies

Collocated observations of H₂O and horizontal wind

NAWDIC:

- HALO provides unique
 capabilities to access
 regions upstream of HIW
 events and in moisture
 source regions
- Study mesoscale variability of moisture transport
- Errors relative to the AR?

Collocated observations of H₂O and vertical wind

vertical wind velocity (m/s) 48.65 48 55 48.45 48.40 2.0 0.5 water vapour mixing ratio (g/kg) 8.20 longitude (deg E) 8.15 8.10 8.05 1.5 altitu 0.5 vertical water vapour flux (g/kg m/s) distance (km) (km) 2.0 1.5 1.0 I 0.5 11:29 11:30 11:31 11:32 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 m/s 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 g/kg -1.8 -1.5 -1.3 -1.0 -0.8 -0.5 -0.3 0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 g/kg m/s Kiemle et al. 2011, QJ

Kiemle et al. 2007, JTECH

NAWDIC:

- Adapt methods to determine latent heat flux profiles for long range HALO flights legs
- Ideally in cloud-free AR moisture source regions upstream (regions of systematic errors?)
- Study representation of latent heat flux in NWP
- Local fluxes vs. the horizontal transport of moisture?

re 7. Latent heat flux profile from airborne lidar data of Figure 3 (leg

Collocated observations of H_2O / O_3 - UTLS and mixing

NAWDIC:

•

- Combined in situ and DIAL H₂O/O₃ observations across the jet stream
- Role of tropospheric processes for UTLS
 - Extend data base: different dynamical situations with differing transport pathways and mixing processes (WCBs)

Collocated observations of $H_2O / O_3 - LS$ moist bias

NAWDIC:

- Extend data base of combined in situ and DIAL H₂O/O₃ observations across the jet stream
- Focus on different dynamical situations, mixing processes

Near-tropopause wind speed biases

 few observational evidence of wind speed near tropopause, unclear connection of tropopause uncertainties to downstream weather

Fig 5c from Schäfler et al. 2020, doi: 10.1175/MWR-D-19-0229.1

Summary

TP structure DI-PBL interaction moisture uptake

/ moisture transport lower level winds

- KITcube: air-mass transformation at coast during cold-front and DI passage
 - characterization of landfalling AR at the microscale
- HALO: mutual benefits from remote sensing and in-situ payload
 - air mass characterisation, mixing processes near the tropopause
 - jet stream wind biases
 - mid- and low-level horizontal moisture transport and vertical water vapour fluxes
- Lagrangian storyline connects UTLS and lower troposphere region
 - upstream HALO observation
 - DI-PBL interaction
 - HIW downstream

additional slides

Jet stream winds

Schäfler et al. 2020, MWR, South Uist Profiler

NAWDIC:

- Wind errors in a post-Aeolus phase
- Systematic analysis of jet stream transects from high altitudes
- Vertical motion related to mesoscale circulations in the jet stream

Krüger et al. 2023, in prep.

Dry air intrusions (DIs)

- DIs: synoptic-scale slantwise descent from the upper troposphere equatorward to the cyclone cold sector
- DIs affect:
 - PBL (destabilization from above, deepening, mixing, evaporation)
 - front intensity and associated impact (precipitation, wind gusts)
 - AR structure, AR moisture sources and moisture transport and associated HIW at AR landfall

