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SHORT-TERM HYDROLOGICAL IMPACTS
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Drought, heatwave breaker - and supply chains?



SHORT-TERM HYDROLOGICAL IMPACTS
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LONGER-TERM (CLIMATE CHANGE) IMPACTS

Down-scaling?
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PROJECTED INCREASE IN AR FREQUENCY
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Projected changes in atmospheric rivers affecting Europe in CMIP5 models
Alexandre M. Ramos, Ricardo Tomé, Ricardo M. Trigo, Margarida L. R. Liberato, Joaquim G. Pinto
22 August 2016, https://doi.org/10.1002/2016GL070634
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INTERACTIONS WITH THE LAND SURFACE

QR —

Legend

Elevation
1078 (m)

D Dyfi Catchment

@ Dyfi Flow Gauge
0 ¢ Dyfi Rainfall Stations
D Teifi Catchment
@ Teifi Flow Gauge
¢ Teifi Rainfall Stations

0 5 10
Kilometres

20

90 |-

%
oo
o

T

100

f) Dyfi at Dyfi Bridge

g) Teifi at Glan Teifi

20CR  CFSR

ERAIN MERRA NCEP

Percentage of
POT-1 floods
related to
persistent ARs in
five re-analysis
products.
Laversetal., 2012.
JGR-A



RECOMMENDATIONS

« Same hydrological reasons to study ARs as US west coast
 Climate change as well as short-term forecasting

« SST cold bias in GCMs
» Different hydrological responses in different catchments

« Complexity of AR front
- Further validation of how different catchments respond to ARs
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Figure 2. A map of the British Isles showing the location of the nine river basins.
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Figure 7. Percentage of the 31 POT-1 floods in each hasin that are related to the persistent ARs identified

in the five reanalyses.



Inspect the properties of the ARs that result in floods as

compared to those that don'’t...

> Significant differencein

orientation variance (Levene
Test) = evidence of orientation

control?
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Significant differencein

means (T-Test) =

Flux dominated

—p evidence of IVT control?

Looking at the results within
the favoured orientation
band, can we see evidence
for a flux threshold too?
Orientation Dominated

Is there a threshold
above which flood
flood causing ARs
must reside?

Griffith et al.
2020



Orientation (followed by IVT) is key to understanding

the most impactful ARs at the Dyfi and Telfi

catchments!

Teifi

Griffith et al.
2020



How about the rest of the UK?

Wales
(detailed in
Figure 3.2)

South Western England
(detailed in Figure 3.6)

& 8
% POT3 Floods Attributed to ARs

¥

England
(detailed in

Figue 3.3 The percentage of POT3 floods

~

associated with ARs across the UK

varies. That is, catchments respond

differently to incident ARs!



...and the orientations/strengths that are observed within

Impactful ARs also vary from catchment to catchment!

Why?



Freguency

We can broadly understand what determines whether

a catchment requires an particular AR orientation...

Distribution Test Results Sorted by Altitude
(9hr+ AR Catalogue)
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Catchments with a maximum
elevations of 400m or more,
are most likely to
demonstrate an preferential

orientation of impactful ARs.

The threshold of IVT
intuitively falls as maximum
catchment elevation

rises...with scatter (!)



...however, the IVT threshold at each catchment is

more complicated. Perhaps the inclusion of the land-

surface and dominant hydrological processes can

help us here...
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Characterise our test catchments
according to several hydrologically

based descriptors (source: FEH)

Latitude
BFIHost

Catchment Area
Impermeable geology

Maximum Elevation

However, as these descriptors remain correlated to some extent, we need to apply

Principal Component Analysis to ensure independent axes...



Which catchment characteristics are the most important
in controlling IVT threshold?

e By projecting onto the PCA axes, we investigate the extent
(% of Very Low . . - . .
Proportion |Cumulative Permeability to which the variability in IVT threshold can be explained by
PC Variance Variance LAT AREA ALTMAX BFIHOST Bedrock)
1 044| 044 -0.59 -0.147 -0.589 0.525 -0.016 the above descriptors_
2 0.21 0.65 0.059 -0.146 -0.215 -0.244 -0.932
3 0.20 0.85 -0.171 0.949 0.070 0.142 -0.213
Bl 0.10 0.95 -0.373 0.137 -0.376 -0.799 0.251
5 0.05 1.00 -0.688 -0.195 0.679 -0.079 -0.149 . . .
* The first principal component (PC1) accounts for 44%
g ro0 g 100) 3 10 g 1o of the variance in the catchment descriptor dataset
\ 0751 3 banos (upper panel). The loading plots (lower panel) allow
e geology
05 om0 \ oso] identification of the drivers of PC1: catchment latitude
\
\\z ofs | and maximum elevation.
PR H-J\Q SPR,.. S— .+ Following a similar process, PCs 2 and 3 are driven by
T ok P a1 /9'0 ® a
025 025 —ops) the impermeable geology and catchment area
/
054 ] 050 respectively accounting for around 20% of the
s A variance each. Using the first three PCs alone
oo —100) oo - therefore, it is possible to account for 85% of the

variance in the independent dataset.



Potential to predict IVT threshold based on catchment

properties?
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How about adding to (existing) impact prediction

frameworks?

Score =0

Orientation Dominated
Catchment?

N/ N

AR Orientation in
Preferential Band?

/ N\

Score + 0 AR IVT > 1.5*IVT Score + 0 Score + 1

?
Thchationts AR IVT > IVT Threshold?

/N [\

Score =2 Score =
Score +0 AR IVT > 1.5*IVT
Threshold?

/o \

Score +1 Score +2

AR IVT > IVT Threshold?

a) First consider what the river
levels were like when the AR
arrived...

<50

No Data

percentile of Initial Flow

b) Impacts predicted to be
strongest in South Wales...

AR Impact Score

c) How does this align with
what was observed?

No Data



CONCLUSIONS

1.

Understanding the strength and duration of an overhead AR is not
enough if we want to predict the most impactful events across the UK.

The catchment is able to amplify or dampen the effects of an
overhead AR dependent on the dominant hydrological processes
within the basin.

How does this relate to AR Recon? Our ability to forecast key AR
properties offers to potential to directly infer ground level impacts
(thus avoiding complicated downscaling...)



