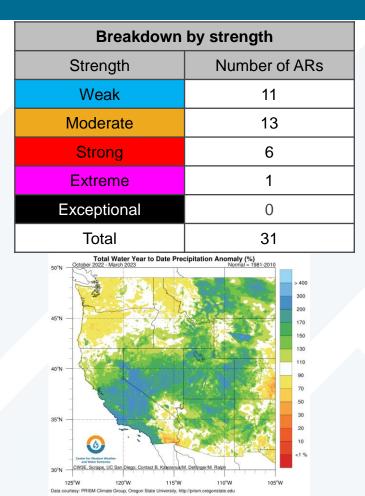
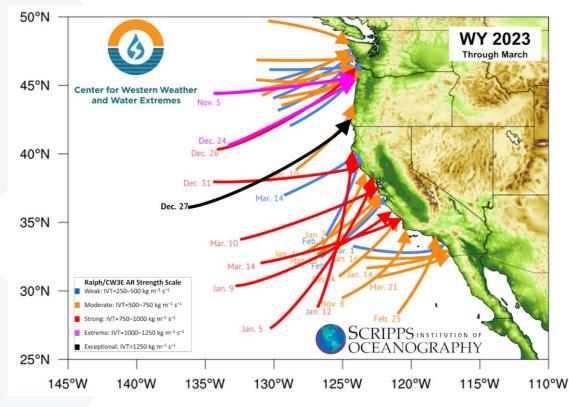
Center for Western Weather and Water Extremes

SCRIPPS INSTITUTION OF OCEANOGRAPHY AT UC SAN DIEGO


MESOSCALE ANALYSIS OF LANDFALLING ATMOSPHERIC RIVERS IN CALIFORNIA DURING DECEMBER 2022 AND JANUARY 2023

Atmospheric River Reconnaissance Workshop 2023

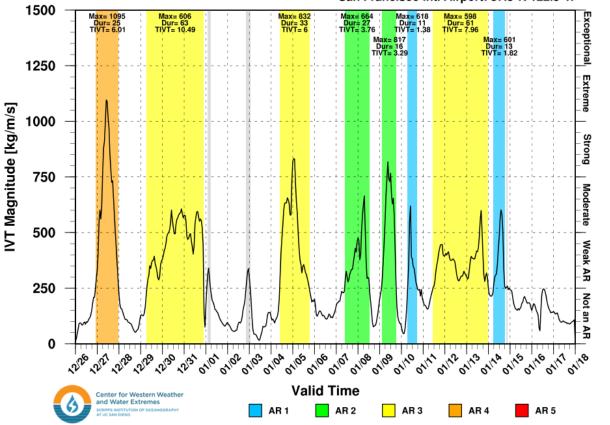

Brian Kawzenuk, C. Hecht, J. Cordeira, A. Wilson, S. Bartlett, C. Castellano, J. Rutz, A. Cobb, D. Nash, X. Zou, T. Hsu

Winter 2023 Summary

31 atmospheric rivers impacted California between October 1st, 2022, and March 31st, 2023

December 27th through January 17th

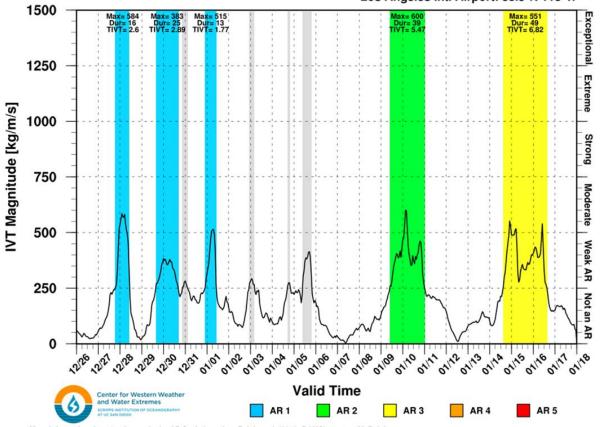
- 9 Atmospheric Rivers made landfall between December 26 and January 17
- Of the 9 ARs, 5 were of strong or greater magnitude
- All 9 ARs were making landfall over CA during their time of maximum IVT
- California has averaged ~6 strong or greater magnitude ARs per water year since 2012

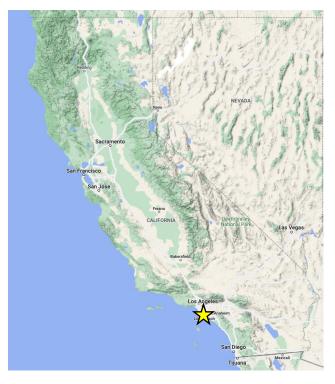


December 27th through January 17th

ERA5 AR Scale & IVT Reanalysis

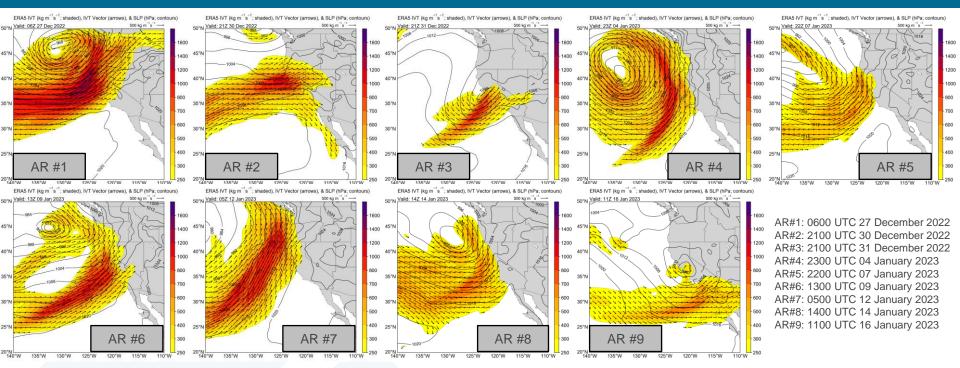
San Francisco Intl Airport: 37.5°N 122.5°W




More information: http://cw3e.ucsd.edu AR Scale based on Ralph et al. (2019; BAMS), contact M. Ralph

December 27th through January 17th

ERA5 AR Scale & IVT Reanalysis


Los Angeles Intl Airport: 33.5°N 118°W

More information: http://cw3e.ucsd.edu AR Scale based on Ralph et al. (2019; BAMS), contact M. Ralph

Landfalling ARs

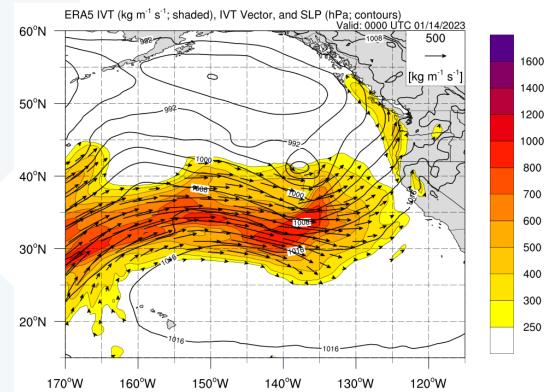
Integrated water vapor transport (IVT) magnitude (kg/ms; shaded according to scale) and direction (vectors according to reference; top right) with sea-level pressure (hPa; contours) at the time of maximum IVT magnitude over coastal California for each of the nine landfalling ARs on 27 December 2022 through 16 January 2023. Data source is the ECMWF ERA5.

Mesoscale Features

	Mesoscale Frontal Wave?	Narrow Cold Frontal RainBand?	Sierra Barrier Jet?	Convection/ Thunderstorms?
AR #1		Y	Y	
AR #2	Y		Y	
AR #3	Y	Y		
AR #4		Y		Y
AR #5		Y	Y	
AR #6	Y	Y	Y	Y
AR #7			Y	Y
AR #8	Y	Y	Y	Y
AR #9	Y	Y	Y	Y

Mesoscale Characteristics

Duration of precipitation, and impacts (e.g., flooding) exacerbated by mesoscale frontal waves. 5 of 9 landfalling ARs featured a MFW.
 Intensity of precipitation modulated by narrow cold frontal rainbands. 7 of 9 landfalling ARs featured a NCFR.


- •Spatial distribution of precipitation in NorCal influenced by Sierra Barrier Jet. 7 of 9 landfalling ARs featured a SBJ.
- •Spatial distribution/intensity of precipitation influenced by convection. 5 of 9 landfalling ARs featured convection.

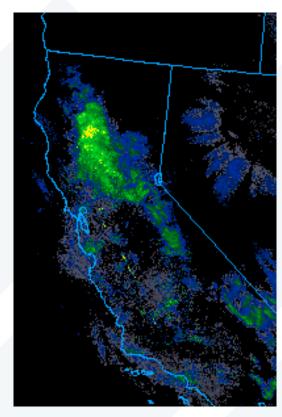
Mesoscale Frontal Waves

Five of the nine ARs featured a MFW

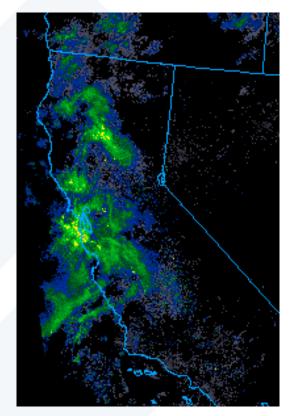
- Around 00 UTC 15 Jan a secondary low began to develop along the AR near 150°W
- The low and AR made landfall over CA at ~00 UTC 16 January
- The development of the low enhanced IVT prolonging AR conditions and precipitation

ERA5 IVT and Sea Level Pressure Valid: 00 UTC 14 Jan – 23 UTC 16 Jan

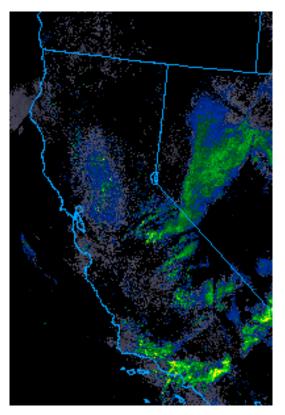
Narrow Cold Frontal Rainbands



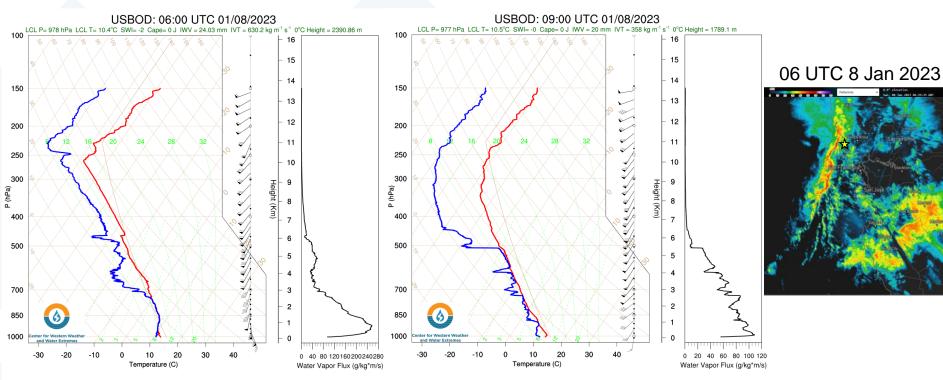
Base reflectivity analyses of several examples of narrow cold frontal rainbands during landfalling ARs on 1, 5, 8, 10, 14, and 16 January 2023


Source: QuadWeather and NOAA Nexrad Level

Narrow Cold Frontal Rainbands


18 UTC 4 Jan – 15 UTC 5 Jan

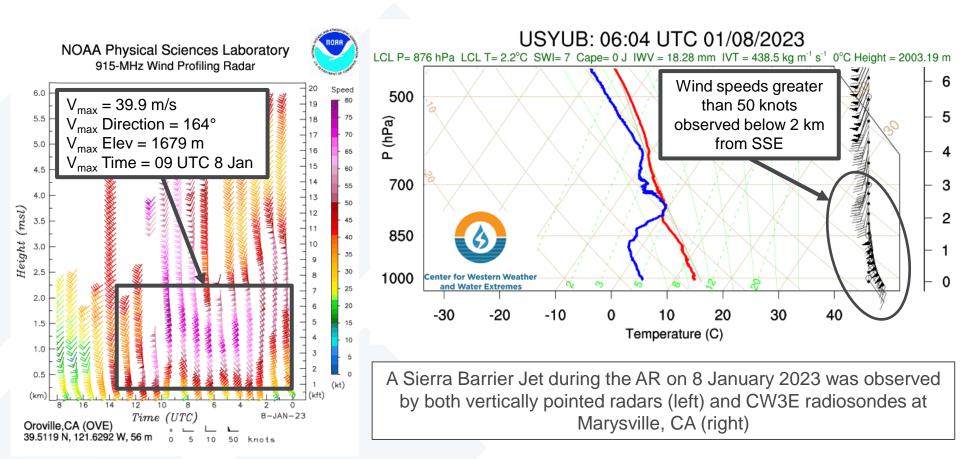
0 – 12 UTC 8 Jan


6 - 15 UTC 10 Jan

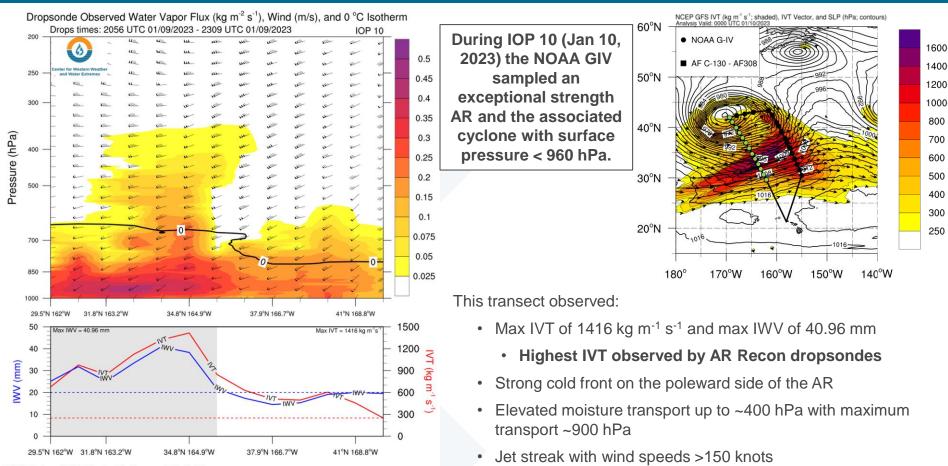
Source: UCAR Mesoscale and Microscale Meteorology Laboratory

Before NCRF

After NCRF


Before NCRF After NCRF USBOD: 06:00 UTC 01/08/2023 USBOD: 09:00 UTC 01/08/2023 LCL P= 977 hPa LCL T= 10.5°C SWI= -0 Cape= 0 J IWV = 20 mm IVT = 358 kg m⁻¹ s⁻¹ 0°C Height = 1789.1 m P= 978 hPa LCL T= 10.4°C SWI= -2 Cape= 0 J IWV = 24.03 mm IVT = 630.2 kg m⁻¹ s⁻¹ 0°C Height = 2390.86 m LCL 06 UTC 8 Jan 2023 elevata n. 01 Jan 2023 06:29:25 GMT 272 kg m⁻¹ s⁻¹ drop in IVT V Height (Km) Height (Km) P (hPa) P (hPa) з ¥. nter for Western Weath Center for Western Weathe and Water Extre and Water Extrem -20 -30 -20 -10 -30 -10 0 40 80 120160 2002 40 280 0 20 40 60 80 100 120 Temperature (C) Temperature (C) Water Vapor Flux (g/kg*m/s) Water Vapor Flux (g/kg*m/s)

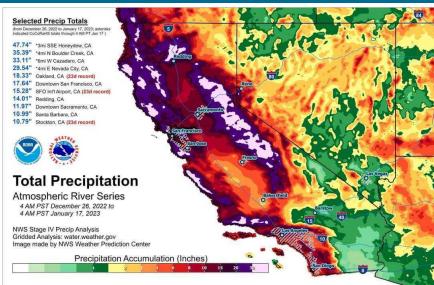
Before NCRF After NCRF USBOD: 09:00 UTC 01/08/2023 USBOD: 06:00 UTC 01/08/2023 nPa LCL T= 10.4°C SWI= -2 Cape= 0 J IWV = 24.03 mm IVT = 630.2 kg m⁻¹ s⁻¹ 0°C Height = 2390.86 m 10.5°C SWI= -0 Cape= 0 J IWV = 20 mm IVT = 358 kg m⁻¹ s⁻¹ 0°C Height = 1789.1 m hPa LCI 100 100 16 16 15 15 06 UTC 8 Jan 2023 14 14 150 150 -----13 Drop in low-level 12 200 wind speeds and 11 250 10 shift in direction 300 Height (Km) Height (Km) 9 P (hPa) 8 400 400 6 6 500 500 5 5 4 700 з 700 2 850 850 1 1000 1000 Center for Western Weathe ter for Western Weat 0 and Water Extren and Water Extre -20 20 30 40 -30 -20 -10 20 30 40 -30 -10 10 0 10 0 40 80 120160200240280 0 20 40 60 80 100 120 Temperature (C) Temperature (C) Water Vapor Flux (g/kg*m/s) Water Vapor Flux (g/kg*m/s)


Before NCRF After NCRF USBOD: 06:00 UTC 01/08/2023 USBOD: 09:00 UTC 01/08/2023 LCL P= 977 hPa LCL T= 10.5°C SWI= -0 Cape= 0 J IWV = 20 mm IVT = 358 kg m⁻¹ s⁻¹ 0°C Height = 1789.1 m P= 978 hPa LCL T= 10.4°C SWI= -2 Cape= 0 J IWV = 24.03 mm IVT = 630.2 kg m⁻¹ s⁻¹ 0°C Height = 2390.86 m 06 UTC 8 Jan 2023 # elevati
. 05 Jan 2023 06:29:25 GMT Decreased moisture below 750 hPa Ì Height (Km) Height (Km P (hPa) nter for Western Weath Center for Western Weathe and Water Extre and Water Extrem -20 -30 -20 -10 -30 -10 0 40 80 120160 2002 40 280 0 20 40 60 80 100 120 Temperature (C) Temperature (C) Water Vapor Flux (g/kg*m/s) Water Vapor Flux (g/kg*m/s)

Before NCRF After NCRF USBOD: 06:00 UTC 01/08/2023 USBOD: 09:00 UTC 01/08/2023 LCL P= 977 hPa LCL T= 10.5°C SWI= -0 Cape= 0 J IWV = 20 mm IVT = 358 kg m⁻¹ s⁻¹ 0°C Height = 1789.1 m P= 978 hPa LCL T= 10.4°C SWI= -2 Cape= 0 J IWV = 24.03 mm IVT = 630.2 kg m⁻¹ s⁻¹ 0°C Height = 2390.86 m 06 UTC 8 Jan 2023 600-meter drop in freezing level V Height (Km Height (Km) P (hPa) P (hPa) Ż з Center for Western Weathe nter for Western Weat and Water Extrem and Water Extre -20 -30 -20 -10 -30 -10 0 40 80 120160200240280 0 20 40 60 80 100 120 Temperature (C) Temperature (C) Water Vapor Flux (g/kg*m/s) Water Vapor Flux (g/kg*m/s)

January 8 Sierra Barrier Jet

IOP 10: January 10, 2023



UCSD Scripps CW3E; Contact B. Kawzenuk/M. Ralph

Additional Information

Additional information about these events is available on the CW3E website:

- CW3E AR Updates: <u>https://cw3e.ucsd.edu/news/</u>
- AR Recon Data: <u>https://cw3e.ucsd.edu/arrecon_data/</u>
- AR Family Story Map: coming soon

Poster Session:

- The Landfalling Atmospheric Rivers of Water Year 2023; C. Hecht
- The Atmospheric Pattern and Record Precipitation across the Western U.S. during Winter 2022/2023; J. Rutz

