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DIRECTIONAL WAVE SPECTRA BAROMETER DRIFTER (DWSBD)™

DWSBD

Technical Description

* 35 cm sphere surface float

e GPS-based tracking and wave engine ABS Barometric

e Iridium Short Burst Data (SBD) telemetry Pressure Port
* Onboard datalogger with up to 16 GB of storage
* Fourier coefficients a0, a1, b1, a2, b2 ABS Hemisphere
® 1/256 Hz bandwidth from 0.03-0.50 Hz
Stainless Steel
Sealing Band

* Sea level barometric pressure sensor (+0.4 hPa accuracy)
® User-programmable sampling window

® Sea surface temperature (+0.05 K accuracy)

* Freely drifting or restrained mooring configurations

® One-year lifespan

Eyebolt for Nearshore

> Download technical illustration (312 KB pdf) Mooring Applications

Sea Surface
Temperature Sensor

https://gdp.ucsd.edu/ldl/dwsbd/
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AR Recon 2019-20 - Surface

Pressure over NE Pacific

Buoys were deployed to fill a gap in SLP observations
over the NE Pacific after feedback from a meeting of
the AR Recon Steering Group at ECMWEF in Fall 2018.

The drifters span a large region over the season. Initial
deployment is along a line dropped from flights or

ships of opportunity.

Leverages federal investments by
upgrading instrumentation provided
through NOAA’s Global Drifter Program

Figure courtesy Brian Kawzenuk

Center for Western Weather

| and Water Extremes

SCRIPPS INSTITUTION OF OCEANOGRAPHY
AT UC SAN DIEGO



Data Denial Experiments with and without AR Recon Buoys: 2019 & 2020

Control experiment: All observations —

including SLP from buoys were assimilated S ECMWF
. e e G y  Integrated Forecasting

prior to forecast initialization SR System f

Denial experiment: Buoy SLP data were
withheld from assimilation

Medium range forecasts were run (10 days)




Observation — Background (1 and 99 %)

The mean(O-B) is significantly improved
in the Control experiment compared to the
denial experiment.

Control

Control (99%):
Mean error for background = 0.37

Denial (99%)) :
Mean error for background = 0.51
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Forecast error : Mean Sea Level Pressure

Init: 01 Feb 0Z Verify: 01 Feb 12Z Init: 01 Feb 0Z Verify: 10 Feb 12Z
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Forecast errors - AR Recon Buoys: 2019 & 2020

RMSE for Mean Sea Level RMSE (MSLP) . RMSE (AR MSLP)
Pressure and the Integrated
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Buoy Impacts and Future Plans T =2

 Ocean surface buoy observations of SLP in a data sparse region has an im‘pact
on analysis of MSLP an

urface variables
» A _l
* Changes in surface pressure ca \lﬁrpact the mid-latitude low pressure system

* Continue efforts tiveness of buoy observations for multiple years

and other BN
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Why are we studying Atmospheric
River impacts on the upper ocean?

To understand relevant processes and
possible implications for air-sea interactions.



Why are we studying Atmospheric
River impacts on the upper ocean?
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Fraction of cumulative precipitation by ARs"
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Pilot experiment in the North Pacific: datasets

* Argo floats

e custom sampling for selected floats
likely to be co-located with
precipitation from an atmospheric — .t
river o e

| Descentto depth - 6 hours

Temperature and

* ERAS Reanalysis, e.g. winds, IVT e T

ascent -6 hours

* GPM precipitation




Pilot experiment in the North Pacific: Argo sampling

Argo floats :
sampling to 500m
continuously
during an AR-
event, 1 profile
every ~4-5 hours,
instead of every
~10 days

M@h Explore ¥ Colocation APl Jupyter Notebooks Publications

Explore Argo Profiles

12/27/2022

End Date
01/06/2023
Max day range: 11
Depth
Require levels deeper than [m]
0
Map Center Longitude
Center longitude on [-180,180]
180
Subsets
Display Argo Core O
Display Argo BGC @
Display Argo Deep @
Object Filters

Argo platform ID

Reset Map

Database stats

Number of core profiles: 2745840
Number of BGC profiles: 261583

Number of deep profiles: 29500

Argo data is synced nightly from IFREMER

B e |l +

Aboul

4 https://argovis.colorado.edu/argo |




Near-surface ocean freshening during AR precipitation events
* Measured by Argo floats during a pilot experiment

34.25

o Fig. 4 Salinity during AR passage
- (lines colored by pressure level,
- left y-axis); GPM precipitation

; (gray line, right y-axis).
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e Captured by 1D General Ocean Turbulence Model (not shown)



ECCO Ocean State Estimate captures freshening

150° W 120° W Salinity budget terms
‘ Colors as in 1078 in the box in the map on the left
. Fig. 3, now for 6f | | | 1
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ECCO (Estimating the Circulation and Climate of the Ocean; v4r4) captures
freshening and shows air-sea exchanges and vertical diffusion contribute to it.



Summary

* Rainfall from atmospheric rivers contributes to a seasonal near-
surface ocean freshening with implications for air-sea interactions
and seasonal predictions

* Atmospheric river events produce salinity anomalies that are
detectable by ocean instruments and were measured by Argo
floats

* Wind regulates salinity response to AR
* Near-surface freshening lasts several hours
* Implications for air-sea interactions

Thank you!
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Project Goal

Demonstrate differences
between potential
predictability of integrated
vapor transport (IVT) and
precipitation at subseasonal to
seasonal (S2S) lead times

Introduction
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Winter 2022-2023

Odds of Water Year 2023 Reaching Various Fractions of Water Year Normal Precipitation Totals
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Motivation

f. Potential Predictability with Forecast Day

Previous work showed IVT ol =

. - PRECIP
to have greater forecast ool
skill than precipitation at 2 ]
medium-range lead times 2
0.2}
0.1}
The same relationship has g.ojt
. 1

not been demonstrated in Forecast Day

the S2S range

Source: Lavers et al. 2016
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Potential Predictability

RMSE OF DJF SST HCST with Oct IC(1982—2009) AC SKILL OF DJF SST HCST with Oct IC(1982—-2009)
"Perfect" Model "Perfect" Model
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Data

20 years of ECMWEF S2S reforecasts initialized during DJF months (N=500)
Lead times at intervals of 24-hours, initialized at 0000 UTC
Reforecasts initialized 3-4 days apart

11 Ensemble members

1.5° x 1.5° horizontal grid resolution spanning entire globe

Anomalies calculated from weekly climatology in the model

~ ECMWF

Introduction Methods Results Conclusion
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North Pacific Jet Regimes

EOFs are calculated
from zonal wind
velocity anomalies at
300 hPa

Leading EOF:
Extension/Retraction
of North Pacific Jet
(NPJ)

Second leading EOF:
Poleward/ Equatorwa rd

shift of NPJ

Introduction

(a) 1800 UTC 11 February 2004 ]
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(b) Poleward Shift
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Jet Extension
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Results
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Jet Exit Region

Source: Winters, Keyser, Bosart (2019)
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Importance of Predicting Jet Exit
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Week 3 and 4 ROC Scores

Week 3 >90th Perceqtile IVT ROC Score

Week 3 >90th Percentile Precipitation ROC Score
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Week 3 and 4 ROC Score Differences
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Change in Jet Exit ROC Scores (IVT-Precip)
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Impact of Smoothing Spatially

Jet Exit ROC Score, No Spatial Smoothing Jet Exit ROC Score, Spatial Smoothing
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Anomalous Ensemble Spread of 850 mb GPH (shaded) and 300
mb GPH (contours) during MO >90™ Percentile Jet Exit IVT

Above Average Skill
N
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Week 3

Week 4

-6 6
850 mb Geopotential Height Ensemble Spread (m)
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Main Conclusions

There is some potential predictability of both >90t percentile

IVT and precipitation weeks exists out to week 4 in the jet exit
region

IVT generally has more forecast skill than precipitation does over
the North Pacific at subseasonal lead times

Local variability cannot fully explain differences in forecast skill

The strength of the NPJ can have a significant impact on the
predictability of both IVT and precipitation in the S2S range

Introduction Methods Results Conclusion




