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Flooding in Nagano on Oct. 13, 2019



Introduction

In the western North Pacific, atmospheric rivers (ARs) occasionally form in association with tropical
cyclones (typhoons) and cause a heavy rainfall in a distant region from the center of typhoons.

ARs transport large amounts of water vapor and cause a heavy rainfall in landfall regions.

ARs often cause quasi-stationary line-shaped mesoscale convective systems (QL-MCSs) and they bring
heavy rainfalls in a local area. This results in severe disasters such as floods and landslides.

Quantitatively accurate measurement of water vapor amount in ARs is difficult because most water vapor
are present in the lower atmosphere over the sea. Moreover, ARs are very narrow and highly variable with
time.

An aircraft observation iIs promising to make accurate measurements of water vapor of ARs.

® Since 2017, T-PARCII (Tropical cyclone-Pacific Asian Research Campaign for Improvement of Intensity

estimations/forecasts) project has been performing in situ aircraft observations of typhoons and ARS using
a dropsonde system.

The T-PARCII team performed dropsonde observations of an AR on 5 July 2022 using the Gulfstream IV
(G-1V) jet.

In this presentation, aircraft dropsonde observations of ARs will be introduced.



Schematic image of AR In the eastern North Pacific
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Schematic summary of the structure and strength of an atmospheric river based on dropsonde measurements
deployed from research aircraft across many atmospheric rivers and on corresponding reanalyses that provide
the plan-view context. Magnitudes of variables represent an average midlatitude atmospheric river. Average
width is based on atmospheric river boundaries defined by vertically integrated water vapor transport (IVT;
from surface to 300 hPa) lateral boundary threshold of 250 kg m-' s-'. Depth corresponds to the altitude below
which 75% of IVT occurs. The total water vapor transport (a.k.a. flux) corresponds to the transport along an
atmospheric river, bounded laterally by the positions of IVT = 250 kg m~'s~! and vertically by the surface and
300 hPa. (a) Plan view including parent low pressure system and associated cold, warm, and warm-occluded
surface fronts. IVT is shown by color fill (magnitude; kg m~'s™') and direction in the core (white arrow). Verti-
cally integrated water vapor (IWV; cm) is contoured. A representative length scale is shown. The position of
the cross section shown in (b) is denoted by the dashed line A-A". (b) Vertical cross-section perspective, in-
cluding the core of the water vapor transport in the atmospheric river (orange contours and color fill) and the
pre-cold-frontal low-level jet (LL)), in the context of the jet-front system and tropopause. Water vapor mixing
ratio (green dotted lines; g kg~') and cross-section-normal isotachs (blue contours; m s-') are shown. [Figure
reproduced from Ralph et al. (2017b). Schematic prepared by F. M. Ralph, ). M. Cordeira, and P. ). Neiman and

adapted from Ralph et al. (2004), Cordeira et al. (2013), and others.] Ra|ph et al. (2018 BAMS)



AR in the western North Pacific (around Japan)

a 0000 UTC 19 July 2006 SLF, UVS00-1000 b IVT
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FIG. 1. An example of an AR in the western North Pacific detected by IVT Kamae et al. (2017, JC)
in JRA-55. (a) Surface weather chart at 0000 UTC 19 Jul 2006. Contours represent sea level pressure
(hPa). Vectors indicate horizontal wind (m s1) averaged between 900- and 1000-hPa levels. Light and
dark shading indicate regions where absolute wind speeds exceed 10 and 20 m s, respectively.
(b) IVT (kg m? s1) and outline of a detected AR (red line; 140 kg m't s1?). Following texts are omitted.

* The AR exists along the southern Baiu front and northern Pacific High.
= High IVT (also high IWV) = Cause of heavy precipitation events.




An atmospheric river associated with typhoons on 10 September 2015
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Atmospheric river events associated with typhoons
Talas (2011) Wipha (2013) Etau (2015) Jebi (2018) Hagibis (2019)
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T-PARCII (Tropical cyclone-Pacific Asian Research Campaign for Improvement of
Intensity estlmatlons/forecasts) IS aiming to iImprove estimations and forecasts
Iorsci=ocw. /P
- .m—q;-—- The first phase (2016~021)

® Typhoon intensity observation
® Improvement of forecast

The second phase (2021~2025)

71 ® In addition to the above objectives
8| ® Rapid intensification

o Concentrlc eyewalls
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The dropsonde data are assimilated to the
R | numerical models



Aircraft and dropsonde system for typhoon observatlon

Observation Jet (Gulfstream 1V) Dropsonde ,' I New dropsonde biodegradable material used
Capable of high-altitude observation and \ shooterinthe | -
long-distance flight \ aircraft cabin




T-PARCII Aircraft observations in 2022

Tropical cyclone (TC) mission Atmospheric River (AR) mission

INTEGRATED MIXING RATIO AND WATER VAPOR FLUX
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|Sea level pressure, surface wind, and rainfall intensity 11
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|CReSS Simulation: Track and intensity of Typhoon AERE (2022) JMAVS. CTL
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= The CTL shows the fairly accurate track and intensity evolutions.



| IVT (integrated water vapor transport; shaded ) and IVT Vector 13
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- ARI1: the water vapor transport passing to the west of Taiwan was an influence of Typhoon CHABA
- ARZ2: another water vapor transport is present to the east of Taiwan

- Both ARs eventually reached the western Japan to the east of Typhoon AERE (2022)



| WV (integrated water vapor; shaded ) and IVT Vector 14
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AR1: the water vapor transport passing to the west of Taiwan was an influence of Typhoon CHABA
ARZ2: another water vapor transport is present to the east of Taiwan

Both ARs eventually reached the western Japan to the east of Typhoon AERE (2022)



| Backward air parcel trajectory analysis
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78-h backward air parcel trajectories ending
at1200 UTC 5 JULY 2022 using CReSS
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run time = The air parcels in the AR originated over the South China Sea (SCS).
Eight sets of 25 points = Taiwan topography has affected the air parcel trajectory.
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. « air parcels ending at 1 km: passing to the west and east of Taiwan
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Typhoon AERE (2022)
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Aircraft observation of atmospheric river on July 5, 2022

[CLOUD PHASE] 00:00:00 UTC 05 JUL 2022

Aircraft path in the morning of 7/5
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Vertical profiles of water vapor along the morning flight

Morning flight on July 05, 2022

, Distance-heightsectonoiav ® 23 of the 25 dropsoundings are observed
C— ., the vertical profiles of water vapor.
Flight direction » ® Toestimate total precipitable water,
300 18 height value obtained by the GPS data
g . should be needed.
2 2 @ If the height values are not obtained,
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o 600 1 6 values using the hydrostatic equilibrium
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Comparison of IWV of the morning flight with the CReSS simulation

Total Precipitable Water (Morning flight) ~ 00Z July 05, 2022

34" o %0
75
32’ 70
65
30" -
&0
2’ 55
amisOshima) i
26 94 mm at 295 mASL
L o L 45
48.52 mw‘ %
24 :
~_ Ishigakijima 35
207 67.12 mm a0
1247 126° 128 130° 1327 134 138° 13:13'

= Background color: Simulated IWV by CReSS at 00Z

= Colored circle: Retrieved IWV from the dropsounding observations

= Retrieved IWV points are drier than simulated one, except for the south of
Kii Peninsula.
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Potential temperature and water vapor profiles at NSO4 sounding
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Potential temperature and water vapor profiles at NS12 sounding
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Comparison of IWV of the afternoon flight with the CReSS simulation

Total Precipitable Water (Aftemoon flight)  06Z July 05, 2022
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KMA/NIMS Atmospheric Research Aircraft

Type King Air 350HW

Identification Manufacturer Beechcraft
Engine category Turbo-prop
Size (L/W/[H): 14.22/17.65/ 4.37 m

. Maximum take-off payload 7,425 kg

Per:cl));::gnce Max altitude 9.6 km with maximum payload
Range 2,871 km at maximum payload
Mission flight 5.5 hrs with maximum payload
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The T-PARCII team performed dropsonde observations of the AR on 5 July 2022 using the
Gulfstream IV (G-1V) jet.

A tropical depression changed from Typhoon Chaba was located over southern China and
Typhoon Aere was present to the west of western Japan.

Two major ARs extended from the South China Sea to western Japan. One is located in between
China and Taiwan and the other to the east of Taiwan.

A total of 53 dropsondes were launched from G-IV at a height of 43,000 ft during the round-trip
flights over the Pacific and the East China Sea.

The water vapor mixing ratio was more than 20 kg/kg below a height of 1 km to the south of
western Japan.

® A southwesterly transported the low-level large water vapor toward Japan.

® Dropsonde data were transmitted in real time from G-1V to the Japan Meteorological Agency,

and they were assimilated into a numerical model to perform weather forecasting.

An aircraft observation is promising to make a highly-accurate measurement of water vapor of
ARs.



Eye wall of typhoon Mindulle observed from inside of the
“eye at a height of 45000 ft on 29 September 2021




