

Center for Western Weather and Water Extremes scripps institution of oceanography at uc san diego Atmospheric River Analysis and Forecast System (AR-AFS): High-Resolution Experiments for Improving AR Precipitation Forecasts

Keqin Wu^{1,2}, Xingren Wu^{1,3}, Vijay Tallapragada¹, and F. Martin Ralph⁴ 1 EMC/NCEP/NWS/NOAA, 2 NGI, 3 Axiom, 4 CW3E

Outlines

- AR-AFS Introduction
- AR-AFS for 2022-2023 AR Recon
 - Summary

ž

ज़ौ

ĸ

四

212

- Case Studies
- AR-AFS Physics Experiments
- Conclusion & Future Work

Motivation

Example: A 5-day Forecast in the year 2030

Not much different from today

ž

 \square

12

- Not really sure if State should move resources to San Francisco or Santa Barbara
 - Decision makers simply WAIT to act

Actionable information

- The State pre-deploys assets to San Francisco
- Emergency Operations Center activates
- The Lake Medocino Reservoir *releases* water to avoid catastrophic flood
- The Twitchell Reservoir *saves* water enough to serve water to 10,000 households / yr

NATIONAL WEATHER SERVICE

 \mathbb{A}

51.5

AR-AFS: HighRes Regional Model within the UFS

Orography (m)

Model Configuration

- FV3 Dynamical core
- Horizontal Resolution: 3 km ESG, 3200X2300
- 120 hour forecast at 3 hour interval
- Domain: Eastern Pacific and CONUS
- Vertical Resolution: 64 levels, 1000-0.2 mb

Physics

- GFS EDMF PBL
- **GFS** surface layer
- Thompson Microphysics Noah LSM
- **RRTMG** radiation
- SAMF convection scheme

Resource

- CW3E's Comet: 124 compute nodes, 12 hours per cycle
- NOAA's Orion: 110 compute nodes, 4 hours per cycle

- Designed from a combination of UFS High-**Res RRFS and HAFS** configurations
- Initialized with operational GFS IC/BC
- No DA capability yet

AR-AFS: HighRes Regional Model within the UFS

Started testing near real-time experiment during 2022 AR recon on CW3E Comet

Run near real-time experiment during 2023 AR recon on CW3E Comet

AR-AFS: HighRes Regional Model within the UFS

2022030100

Init 2022022800 (IOP-15) valid 2022030100

2022022800

⊿

Potentially helps us to better capture structures and small high precipitation regions

12

AR Recon 2022-2023

2022-2023 Intensive Observation Period (IOPs)

Spatial domains for precipitation verification

WEST: West Coast PNNC: Pacific Northwest and Northern California CA06: Central California

Data Impact Experiment with AR-AFS

Precipitation Verification in WEST (1.0 in cutoff)

24 hr Precip mean (inches) (ST4 > 1.0 in)

f72. WEST

Initial Time (mmdd)

23 24 25 26 27 28 29 30 31

ARAFS_CTRL avg: 0.942 ARAFS DENY avg: 0.916

ST4 avg: 0.911

ž

DoD

2.0

Precip (inches)

0.5

0.0

Mean

MAE

Overall positive

NATIONAL WEATHER SERVICE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Data Impact Experiment with AR-AFS

Precipitation Verification in PNNC and CA06

PNNC

ž

औ

K^

12

Mean

CA06

NATIONAL WEATHER SERVICE

AR-AFS vs GFS

MAE (Mean Absolute Error) 2023 ETS (Equitable Threat Score) 2023

NATIONAL WEATHER SERVICE

ž

Ä

Case Study - IOP 14

Init:2023011400 (F72) Valid: 2023011700

20.00

10.00

. ज़ौ

 κ

明

 $\mathbf{\Lambda}$

212

Stage IV Obs

123°W

122°W

121°W

120°W

119°W

Precip (inches) by forecast Hour (ST4 > 0.1 in) Valid: 2023011700, Lat: 34.0-40.0, Lon: 236.0-242.0 N

Precip (inches) by forecast Hour (ST4 > 1.0 in) Valid: 2023011700, Lat: 34.0-40.0, Lon: 236.0-242.0 N

NATIONAL WEATHER SERVICE

K

明

 \square

515

Case Study - IOP 14

Init:2023011400 (F72) Valid: 202301170000

NATIONAL WEATHER SERVICE

Salinas

FY23 AR project objectives

- Create a prototype Atmospheric River Forecast System that improves upon current (non-operational) AR models
- Use the FY22–23 winter to test this and other AR models
- Apply social science to assess stakeholder AR forecast experiences

- The comparison is made using 25 AR-AFS forecast cycles from the 2022 AR season and 15 cycles from the 2023 AR season for precipitation forecasts over the U.S. West Coast.
- All forecasts were initialized during the Intensive Observation Periods (IOPs) of active ARs at 00 UTC.
- Hypothesis: Thompson microphysics scheme and YSU PBL scheme are more suitable for simulating AR associated precipitations.

515

K

CCPP Suites used in the experiments with AR-AFS

Experiments/Suites	gfdlmp_tedmf	thompson_gfdlsf	thompson_gfdlsf_ysu
Microphysics	GFDL	Thompson	
PBL	EDMF-TKE		YSU
Surface layer	GFDL		
Land surface	GFS-Noah		
Convection	SAMF		
Radiation	GFS-RRTMG		

IOP-08 (F72) forecast is improved with new physics

. जौ

 κ

明

 $\mathbf{\Lambda}$

212

ST4

Near Real-time ARAFS

Precip (inches) by forecast Hour (ST4 > 1.0 in) Valid: 2023011100, Lat: 36.0-38.0, Lon: 240.0-242.0 N

A different Physics Suite

Precip (inches) by forecast Hour (ST4 > 1.0 in) Valid: 2023011100, Lat: 36.0-38.0, Lon: 240.0-242.0 N

NATIONAL WEATHER SERVICE

AR-AFS Physics experiments

- Precipitation is sensitive to both microphysics and PBL schemes
- Larger sensitivity occurs in the PBL scheme testing
- Thompson microphysics scheme with GFDL surface scheme showed a potential to improve AR associated precipitation forecasts
- Thompson scheme and YSU scheme showed smaller MAEs at short leads but larger MAEs at long leads (Need further investigation)

512

ž

औ

K

明

R

明

 $\mathbf{\Lambda}$

- AR-AFS capture the structure of precipitation and precipitation on watershed levels better than GFS but has less skills in predicting precipitation in larger domains
- AR-ARS has potential to improve the prediction of AR landfall point and high-resolution precipitation forecast with more suitable model physics and data assimilation
 - Data collected from AR Recon could be used to validate model physics
 - We will be looking into additional diagnostics