

Atmosphere Monitoring

Integrated carbon cycle in reanalyses

Anna Agusti-Panareda

Thanks to Joe McNorton, Aura Lupascu, Souhail Boussetta, Gianpaolo Balsamo, Margartia Choulga, Michail Diamantakis, Sebastien Massart, Peter Weston, Patricia de Rosnay, Marco Matricardi, Nicolas Bousserez, Luca Cantarello, Ernest Koffi, Jerome Baree, Roberto Ribas, Antje Inness, Richard Engelen and CAMS colleagues

ECMWF Annual Seminar 08/09/2023

Integrated carbon cycle in reanalyses

Atmosphere Monitoring

- What is the carbon cycle and why is it important?
- Current representation of carbon cycle in the Integrated Forecasting System at ECMWF
 - ✓ Modelling
 - Observations
- Current CAMS IFS re-analysis of CO₂ and CH₄
- The development of a flux inversion system in the IFS to monitor emission of CO₂ and CH₄ (new Copernicus Service).
- Recent model developments and use of new observations
- Exploring synergies between composition and NWP
- Benefits of integrating the carbon cycle in Earth System re-analysis

Motivation for integrated carbon cycle in reanalyses

- Atmosphere Monitoring
- The two most abundant long-lived greenhouse gases Carbon dioxide (CO_2) and methane (CH_4) are controlled by the global carbon cycle
- They are released to the atmosphere by human activities and are responsible for humaninduced greenhouse gas warming (IPCC AR6)
- Their concentrations have been increasing since pre-industrial levels (1750) by 49% CO₂, 150% for CH₄
- The integration of carbon cycle in re-analysis has the potential to improve the representation of the water and energy balance through their links with the biosphere, hydrosphere and radiative transfer processes.

Observed warming is driven by emissions from human activities, with greenhouse gas warming partly masked by aerosol cooling

Processes affecting atmospheric CH₄

Atmosphere Monitoring

Methane sources (2008-2017): 576 (550-594) TgCH₄/yr

60% anthropogenic emissions: 366 (349-393) Tg CH_4/yr

- □ Agriculture and waste: 217 (207-240)
- □ Fossil fuels production and use: 111 (81-131)
- □ Biomass and biofuel burning (26-40 TgCH₄/yr)

40% natural fluxes: 230 Tg CH₄/yr

- U Wetlands: 181 (159-200)
- Other natural emissions (inland waters, geological, wild animals, termites, permafrost, vegetation): 37 (21-50)

Methane sinks (2008-2017): 556 (501-574) TgCH₄/yr

- Chemical destruction in atmosphere
- Soil sink
- CH4 lifetime of ~ 10 years.

Atmospheric Ch4 growth rate: +18.2 (17.2-19.0) TgCH₄/yr

https://atmosphere.copernicus.eu/ghg-services/methane-budget

Processes affecting atmospheric CO₂

Atmosphere Monitoring Global CO₂ budget of fluxes into/from atmosphere (2012-2021)

estimated sources & sinks

Source: Friedlingstein et al 2022; Global Carbon Project 2022

https://atmosphere.copernicus.eu/ghg-services/carbon-cycle

Changes in the global CO₂ budget over time

Atmosphere Monitoring The sinks have continued to grow with increasing emissions, but climate change will affect carbon cycle processes in a way that will exacerbate the increase of CO_2 in the atmosphere

The budget imbalance is the total emissions minus the estimated growth in the atmosphere, land and ocean. It reflects the limits of our understanding of the carbon cycle.

Model representation of CO₂ fluxes (boundary forcing)

Atmosphere Monitoring

A mix of prescribed and modelled fluxes are used as boundary conditions in IFS CAMS model

Source: Friedlingstein et al 2022; Global Carbon Project 2022

Processes represented in the Integrated Forecasting System (IFS) at ECMWF

Atmosphere Monitoring

Carbon cycle components in IFS

- Fossil fuel emissions
- Natural fluxes from land ecosystems and ocean
- Fires
- Atmospheric tracer transport with Integrated Forecasting System (IFS) at ECMWF.
- Chemical sink of CH4 from a climatology
- Chemical production of CO₂ by CO oxidation not yet included

One year simulation of atmospheric column-mean CO₂ molar fraction (XCO₂) [ppm]

Carbon dioxide nature run for 2015, created as part of the Carbon Dioxide Human Emissions (CHE) project. Credit: ECMWF. CHE nature run, Agusti-Panareda et al. (2022, Sci. Data)

Atmosphere Monitoring

Global fossil CO₂ emissions from inventories

Some challenges in representing FF fuel emissions in NWP model

- Fossil fuel emissions in near-real time
- Point sources with different injection heights
- Very high-resolution requirements
- High temporal variability (e.g. energy production, traffic, CH₄ leaks)

Global fossil CO₂ emissions have risen steadily over the last decades

Source: Friedlingstein et al 2022; Global Carbon Project 2022

Net Ecosystem Exchange (NEE)

Atmospheric CO₂ source

Respiration (plants, animals) + decomposition of organic carbon in soil by microbes

Modelling Net Ecosystem Exchange (NEE) CO₂ flux in the IFS

Atmosphere Photosynthesis Monitoring

A-gs (Jacobs et al. 1996) & Farquhar, von Cammaer and Berry (1991)

BOUSSETTA ET AL .: LAND CO2 WITHIN THE ECMWF SYSTEM

Ecosystem Respiration

Boussetta et al. (2013)

Reference respiration

snow cover

Environmental factors: light, CO₂, temperature, humidity, soil moisture

2 0E-03 3 0E-03 4.0E-03 5.0E-03 ata bite a 0.0Ee00 May a 5.4E.02

Biogenic Flux Adjustment Scheme (BFAS)

Atmospheric tracer transport

Atmospheric transport by weather systems bring high CO_2 from lower latitudes to high latitudes in the winter and low CO_2 in the summer

10

anomalous concentration (ppm)

---- 30N

-50N

--70N

Barnes et al. (2016)

(a) NOAA Marine Boundary Layer Reference seasonal cycle of CO₂

Transport accounts from lower

Oct

Sep

Nov

Dec

latitudes accounts for 60% of high-latitude seasonal cycle

CAMS IFS CO₂ and CH₄ reanalysis (egg4)

CAMS GHG reanalysis data available from Copernicus Atmosphere Data Store (ADS) https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-ghg-reanalysis-egg4

Monitoring departures in CAMS IFS CO₂ and CH₄ reanalysis (egg4)

Atmosphere

Evaluation of CAMS IFS CO₂ and CH₄ reanalysis (egg4)

Atmosphere Monitoring

 \mathcal{A}

Evaluation of CAMS IFS CO₂ and CH₄ reanalysis (egg4)

Atmosphere Monitoring

- The global trend in the CAMS IFS reanalysis at Marine Boundary Layer sites (MBL) is sensitive to changes in observing system
- Issues constraining global mass with current observing system and 12hour data assimilation window with sparse observations of CO₂ and CH₄

Example: Spatial coverage of GOSAT XCO₂ and CO2 emissions in NE Asia (February)

Monitoring

Challenges faced in current CAMS CO₂ and CH₄ re-analyses:

- Presence of systematic errors in satellite observations, emissions/surface fluxes, CH₄ chemical sinks and initial conditions
- Sparse and changing observing system

Plans/requirements for next CAMS CO₂ and CH₄ re-analyses:

- Improvement of emission dataset in near-real time and natural flux processes in model
- Use CH4 chemical sink from CAMS air quality analysis (IFS-CB05-BASCOE)
- High spatial resolution
- Flux inversion capability (CHE, CoCO2, CORSO projects) for emission monitoring will also lead to a reduction of major sources of model biases

Towards monitoring CO₂ and CH₄ emissions

Prior information: forward model with emissions, natural fluxes and atmospheric chemistry and transport

CO₂ and CH₄ and other co-emitted chemical species (NOx, CO)

Michael Buchwitz, IUP, Bremen

First results from IFS flux inversion system

Atmosphere Monitoring

Prior

10-10

Post - Prior

-5x10⁻¹²

-1x10⁻¹¹

CH₄ Flux (kg m⁻² s⁻¹)

0

3×10-10

2×10-10

Atmosphere

Monitoring

Extended 4D-Var window for CO₂ and CH₄ inversion – Nicolas Bousserez (ECMWF)

- Long data assimilation window is required to constrain the global mass and trends of CO₂ and CH₄
 - Tangent-linear/adjoint models used for short-window containing current observations
 - Ensemble-based covariances used for previous days
 - Short-window state increment (Δc) propagated backward to update past emissions

Timeline of CAMS Emission Services

Integrated carbon cycle in reanalyses

Atmosphere Monitoring

- What is the carbon cycle and why is it important?
- Current representation of carbon cycle in the Integrated Forecasting System at ECMWF
 - Modelling
 - Observations
- Current CAMS IFS re-analysis of CO₂ and CH₄
- The development of an inversion system in the IFS to monitor emission of CO2 and CH4 (new Copernicus Service).
- Recent model developments and use of new observations
- Exploring synergies between composition and NWP
- Benefits of integrating the carbon cycle in Earth System re-analysis

LSCE

Atmosphere Monitoring

Wetland model is a simple parameterisation from CAMS41 based on

- Temperature (Q₁₀ function : 2.337 and soil Temperature : T)
- A proxy for substrate (PFT dependent soil respiration : Re0)
- Wetland fraction (f_{wet} 0-1)
- Fluxes are globally scaled using a global methanogensis rate (S)

 $f_{CH_4} = S \cdot f_{wet} \cdot \text{Re0} \cdot q_{10}^{\frac{T-25}{10}}$

WETLAND FRACTION f_{wet} : GIEMSv3.1 (Pringent et al., 2007) +CAMA-Flood (Yamazaki et al., 2011)

October

Thanks to CAMS41 (Vlad Bastrikov, Philippe Peylin, Fabienne Maignan), Catherine Pringent, Margarita Choulga, Joe McNorton, Gianpaolo Balsamo, Souhail Boussetta

Climatology	IFS wetland	TCCON OBS	mananan
LPJ-WHyMe	model		
Inversion.	(GIEMS+CaMaFlood)		total carbon column observing network

(Spanhi et al., 2011) (Pringent et al. 2007, Yamazaki et al. 2014)

Burgos (Philippines) 18.53°N 120.65°E

New LAI climatology in CY49R1 improves 2mT and CO₂

Change in RMSE for MAM 2m temperature fc (T+60) when using the new ESACCI LULC and new LAI climatology with oper analysis as reference

April: Current LAI climatology (CY48R1) - New LAI climatology (CY49R1)

Coupling urban scheme in IFS with CO₂ emissions from residential heating

Modelling residential CO2 emissions within urban scheme in IFS (McNorton et al., 2021, 2022)

MEHNDI works by taking the annual nationally reported residential sector emissions and spatial and temporally disaggregating those using urban cover used in the IFS. At least 20% of those are assumed constant (cooking etc.) and the remaining up to 80% are derived using the top soil layer temperature in a similar way to the traditional heating degree day. A nationally constant emission factor is calculated to preserve the budget of each country.

Flux =
$$U_{cover} \gamma f(T_{urban})$$

 $T(T_{urban}) = \max(15.5 - Tsoil1, 1)$

 γ , is a national scaling factor based on annual residential heating. U_{cover} is the urban cover. $f(T_{urban})$ is the heating degree day function.

Residential emissions at 1km from MEHNDI model

- One-way coupling between urban tile and emissions.
- Two-way coupling to include effect of heating on urban temperature.

Integrated carbon cycle in reanalyses

Atmosphere Monitoring

- What is the carbon cycle and why is it important?
- Current representation of carbon cycle in the Integrated Forecasting System at ECMWF
 - Modelling
 - Observations
- Current CAMS IFS re-analysis of CO₂ and CH₄
- The development of an inversion system in the IFS to monitor emission of CO2 and CH4 (new Copernicus Service).
- Recent model developments and use of new observations
- Exploring synergies between composition and NWP
- Benefits of integrating the carbon cycle in Earth System re-analysis

Coupling water and carbon cycles

Atmosphere Monitoring

Modelling canopy resistance: empirical vs mechanistic approaches

bach

$$E = \frac{\beta}{r_c + r_a} (q_a - q_{sat})$$

The Jarvis (empirical) approach **HTESSEL in IFS (operational)**

$$r_{\rm c} = \frac{r_{\rm S,min}}{LAI} f_1(R_{\rm s}) f_2(\bar{\theta}) f_3(D_{\rm a})$$

- No coupling with carbon cycle: No CO_2 fluxes (no coupling with atmospheric CO_2).
- Simpler one-way feedback with fewer parameters to adjust/tune.
- Weaker coupling/variability with vegetation? Static vegetation in FC. E.g. semi-arid regions, droughts, etc.

$$r_{c} = f(r_{cc})$$
$$r_{cc} = \frac{\alpha}{4}(C_{s} - C_{i})$$

C()

- Coupling with carbon cycle: CO_2 fluxes in atmospheric CO_2 model
- Vegetation feedbacks. ٠
- Carbon observations to constrain carbon and ٠ water/energy fluxes
- Complex feedbacks and uncertainty in model parameters ٠

Atmosphere

Jarvis versus photosynthesis-based evapotranspiration

HTESSEL

CTESSEL

CTESSEL improves the LE/H simulations (photosynthesis-based vs Jarvis approach)

Boussetta et al. (2013)

2m T Error differences from the CTL

Using Solar Induced Fluorescence (SIF) observations

Optimization of Farquhar photosynthesis parameters and simplified SIF radiative model parameters in ECLand using SIF observations from TROPOMI and FLUXNET GPP observations

CAMS_2-52a : Maignan, Bastrikov, Bacour, Peylin, (LSCE, Science Partners)

Evaluation of CO₂ uptake from photosynthesis

Data assimilation

- to constrain photosynthesis model parameters
- to constrain the CO₂ flux using machine learning techniques to build an observation operator (Sebastien Garrigues, ECMWF).

Assimilation of VOD to analyse LAI – Pete Weston, ECMWF

- Currently the IFS uses a monthly climatology for LAI (no inter-annual variation)
- AMSR2 & SMOS VOD products have been assimilated offline to produce a dynamic daily LAI analysis, which has been used instead of the climatology in IFS experiments

- NWP results show improved forecasts of near surface relative humidity and 2 metre temperature especially over forested areas e.g. Amazon
- The carbon flux results are more mixed with reduced biases of GPP against FLUXCOM over tropical Africa but increased biases over Asia
- Future work (CORSO project) will focus on observation operator development for L1 observation assimilation

Exploitation of CAMS variable CO₂ in RTTOV – Marco Matricaldi (ECMWF)

100.2

: Fixed CO2 profile in RTTOV (operational configuration) Control Experiment : CAMS global CO₂ fields are passed to RTTOV

Results from assimilation trials – Seven months worth of data: 1-6-2021 to 29-1-2022

- Use of CAMS CO₂ model data improves NWP analysis ٠ of temperature
- Forecast scores with respect to own analyses show ٠ small neutral impact overall

Forecast scores: 500 hPa geopotential

1-Jun-2021 to 29-Jan-2022 from 386 to 424 samples. Verified against own-analysis. Confidence range 95% with AR(2) inflation and Sidak correction for 4 independent tests.

Other synergies with NWP

Atmosphere Monitoring

Improving atmospheric transport in IFS :

Mass conservation error in IFS Semi-Lagrangian advection scheme:

The same type of mass fixer first implemented for CO_2 and CH_4 in CAMS IFS GHG AN/FC in 2017 (Diamantakis and Agusti-Panareda, 2017) is now used operational in NWP (IFS cycle 48r1) for humidity and hydrometeors:

- Improves skill of ENS
- Improves precipitation scores
- Eliminates water budget error and almost eliminates energy imbalance

See Becker et al. (2022): https://www.ecmwf.int/en/newsletter/172/news/fixingwater-and-energy-budget-imbalances-integrated-forecasting-system

New HE project (CATRINE, 2024-2026) aims to improve improve tracer transport for the Copernicus CO_2 and CH_4 emission monitoring Service and explore the use of a range of atmospheric tracers CO_2 , Rn_{222} , SF_6 , idealized tracers, humidity and other chemical tracers to diagnose systematic errors in tracer transport

Carbon Atmospheric Tracer Research to Improve Numerics and Evaluation

Difference between forecasts with and without global water conservation with respect to the mean absolute error in precipitation against rain gauge measurements over the northern hemisphere, as a function of lead time.

Example: Transport across tropopause

Benefits of integrating the carbon cycle in NWP/reanalysis

Atmosphere Monitoring

- Integral part of climate system: Information on CO₂ and CH₄ concentration as well as emissions/fluxes is of great interest to scientist/policy makers/citizens
- Consistency and interaction/coupling between Earth system components in the model and also data assimilation (vegetation model, radiative transfer, flux inversion system)
- Synergy with NWP model developments and evaluation. e.g., urban scheme, photosynthesis model and wetland model.
- Supporting evaluation of atmospheric transport errors (e.g. tracer-tracer correlations) and surface energy and water fluxes (through its correlation with CO₂ fluxes from land ecosystems)

 $\widehat{\mathscr{P}}$

Many thanks for your attention!

