Bias in Reanalysis

Climate Change

Bill Bell¹, Hans Hersbach¹, Paul Berrisford¹, András Horányi¹, Joaquin Muñoz Sabater¹, Julien Nicolas¹, Paul Poli¹, Raluca Radu¹, Dinand Schepers¹, Adrian Simmons¹, Cornel Soci¹,

Patrick Laloyaux¹, Inna Polichtchouk¹, Robin Hogan¹,

Andrzej Klonecki², Jon Mittaz³, Emma Turner⁴

[1] ECMWF, Reading, UK[2] Spascia, Toulouse, France[3] University of Reading, Reading, UK[4] Met Office, Exeter, UK

In reanalyses, we aim for :

- continuity
- accuracy in synoptics and climate
- well characterised uncertainties

Biases present challenges for all three aspects

We mitigate biases through:

'Pragmatic' approaches

- **observation domain** *e.g.* VarBC
- model domain e.g. weak constraint 4D-Var

'Ideal' approaches

 improved physical modelling of root causes

Overview

Biases: How are they manifested in reanalyses? What do we do about them? ... and what next?

Observational biases

- Radiances in ERA-Interim / ERA5 & future prospects
- Other innovations

Model biases

- ERA5 stratospheric temperatures
- Weak constraint 4D-Var & model error forcing
- Using early sounding data (IRIS in 1970) to evaluate model error correction strategies

Mean state uncertainties - The systematic component

Summary / Future Perspectives

latitudinal bias (instrumental & forecast model contributions)

Uncorrected First Guess Departures NPP ATMS-7 / K

background errors

- bias ~ background error
 noise: **O**(0.1K)
- For early sounding obs, biases are larger
- DA methods assume observations unbiased wrt background/analysis
- Biases corrected using variational bias correction (VarBC)

Dee, QJRMS, 2005 Auligne et al, QJRMS, 2007

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

Variational Bias Correction in ERA5 – bias model & typical corrections (example : ATMS-7)

Accounts for:

- Instrument errors (spectral, radiometric, ...)
- Forecast model errors
- RT model errors

Expect that in time, as instruments & models improve & datasets are reprocessed:

- The (mean) amplitude of bias corrections reduce; and
- The variance of the bias corrections reduce
- <u>Eventually</u> the corrections are (i) small & (ii) bounded by the uncertainties

Instrument biases in the temperature sounding channels of MSU, AMSU-A and ATMS in ERA5 and ERA-Interim

MSU-3 / AMSU-A7 / ATMS-8 Bias Corrections

Clima 2 \checkmark Chang correction bias ERA Interim Bias corrections (**bold**) ± STDEV of bias corrections (grey) 0 ERA5 envelope Difference in bias corrections BC STDEV of ERA5 bias corrections Ь 1980 1985 1990 1995 2000 2005 2010 2015 ERA5 – ERA Interim ERA5.1 – ERA Interim

MSU-3 / AMSU-A7 / ATMS-8 (54.96 / 54.94 / 54.94 GHz) T –sounding, w.fn. peak at 270 hPa

- Improvements MSU > AMSU-A > ATMS (FY-3 MWTS / MWTS-2, Metop-SG MWS ?)
- Little change from ERA-Interim to ERA5
- Suggests model bias and RT related biases are less significant than instrument biases
- MSU & AMSU-A possible mechanisms identified:
- Radiometer non-linearities. Zou *et al* (JTECH, 2010)
- Spectral shifts. Zou *et al* (JGR, 2011), Lu and Bell (JTECH, 2013)

pernici

 But disappointing results in NWP testing so far (for AMSU-A, Lupu *et al*, ECMWF TM 770, 2016)

MSU-2 / -3 / -4 Bias Corrections

- Similar picture (to MSU-3) for MSU-2 and MSU-4.
- Changes in bias correction *wrt* ERA-Interim are generally small, with the exception of:

pernicus

European Commission

- Aqua AMSU-A 2003-2016
- The period from 2000 2006 (fixed in ERA5.1) see next few slides
- Largest discrepancies AMSU-9 (0.5K), but still detectable in AMSU-7 and AMSU-5

Forward look: Re-characterisation of the MSU instruments NOAA-6 to NOAA-14

Т

(Emma Turner, Met Office)

Climate Change

- Largest sensitivity of bias to spectral shifts expected in MSU channel 3
- Simultaneous estimation of non-linearity and spectral shifts carried out – with several calibration models
- Plan to evaluate the impact of the new data / new . RT modelling in advance of ERA6 back extension.

Commission

Radiative Transfer Model biases in the IR sounders (HIRS, AIRS, IASI, CrIS and SSU)

Improvements in RT modelling: HIRS Temperature Sounding Channels 2 - 7

Improvements in RT modelling: bias corrections for Adv. IR Sounders in ERA5

Change

- AIRS, IASI and CrIS channels shown at ~14µm (710 - 717 cm⁻¹) & peak in the range 430 - 480 hPa
- AIRS & IASI: assume [CO₂] = 376 ppm CrIS assumes [CO₂] = 396 ppm
- HIRS (& SSU & VTPR): assume time varying [CO₂]

European

Commission

CECMWE

Improved RT modelling : SSU Bias Corrections Climate SSU-2 SSU-1 SSU-3 Change peak 29km peak 38km Peak 44 km correction bias ERA-Interim uses SSU-3 as an -2 anchor until ATOVS (AMSU-14) -2 ERA5 uses SSU-3 as an anchor throughout × Minum -5 1985 1990 1995 2000 2005 1985 1990 1995 2000 2005 1980 1980 1985 1990 1995 2000 2005

Improved treatment of RT (cell pressure leaks) in ERA5 (Kobayashi, QJRMS, 2009):

- Reduced inter-satellite biases
- Reduced variance in bias corrections
- Reduced drift in biases (NOAA-7 during 1982-1985)

Other innovations

- Reprocessing and data resue efforts for ERA6 (see Paul's presentation on Wednesday)
 - Conventional and satellite data
 - Copernicus Climate Change Service work & other work by agencies (EUMETSAT, ESA, NOAA/NASA, CMA)
- Improved bias models for ascending-descending / orbital / harmonic biases
 - for sounding radiances (Booton et al [2013], Bormann et al [2023])
 - also applied to microwave imager radiances

- Correction of biases related to thermal gradients in main mirror for Aeolus winds (Rennie at al, 2021)
- Constrained variational bias correction (Han and Bormann, ECMWF Tech Memo 782, 2016)

Model biases in the upper troposphere and stratosphere

The improved mean state for stratospheric temperature in ERA5.1

Climate Change

Monthly average observation-background differences from 1979 onwards for all assimilated bias-adjusted radiosonde temperature data (K) between 40 and 60 hPa, for ERA-Interim, ERA5 (based on 1979- B_{cli} before 2000 and 41r2-B _{cli} afterwards) and ERA5.1 (using 1979- B_{cli} from 2000-2006).

Hersbach, H. et al., 2020, doi:10.1002/qj.3803

- ERA5.1 provides an improved mean state for stratospheric temperature.
- In the troposphere the difference between ERA5 and ERA5.1 is very small.

(see A. Simmons et al, ECMWF Tech Memo 859, Jan 2020)

Model error manifested in biased first guess departures

NOAA-18 AMSU-A8

Climate Change

Model Error / AMSU-A Mean First Guess Departures in ERA5

ERA5 mean first guess departures shown for AMSU-A

Error bars represent $(\pm 1\sigma)$ spread over the lifetime of each sensor

Consistent picture of :

- a cold model bias mid-trop to mid-strat
- a (larger) warm model bias above 10 hPa

Broadly consistent with analysis increments in ERA5 (below, from Fig 16, Hersbach et al, 2020)

Model Error / AMSU-A Mean First Guess Departures in ERA-Interim

Climate

Change

Model Error / AMSU-A Mean First Guess Departures in proto-ERA6 testing (CY48R1)

- Based on JJA 2020 CY48R1 experiment
- Significant changes since ERA5 cycle (CY41R2, 2016):
 - Weak Constraint 4D-Var above 100 hPa
 - Improved dynamics: quintic interpolation
 - Clear sky -> all sky scheme for tropospheric channels
- Overall model in better agreement with observations

• General problems in reanalysis temperatures above 10 hPa well documented (see SPARC-RIP report 2021).

Climate Change

(2) Cold model bias in UTLS - exposed in early period

- Very few observational constraints on stratospheric temperature analysis in the early 1940s so UTLS cold bias is exposed.
- Analysis increments in 10-200 hPa layer very small 1940 (< 20mK above 100 hPa as a global mean)

100-1 hPa

- General problem foreseen & analysed in Eyre (QJ, 2017): with VarBC, if radiances are dominant (cf anchors) model bias is reinforced
- VTPR channels 1 & 2 bias corrected using VarBC reinforcing model cold bias
- Despite clear benefits (from assimilating VTPR) in improving synoptic analysis mean state exhibits a discontinuity.
- VTPR exhibits significant radiometric and spectral errors ⇒ we need VarBC

(4) Impact of model cold biases 2000-2006

• ERA5 and ERA5.1: See previous slides

Upper stratospheric biases in ERA5: Temperature anomalies relative to ERA5 climate

IRIS experiments

 Generally, ERA5 temperature analyses above 10 hPa exhibit biases and discontinuities

 Particularly large biases evident in southern polar winter (>> 6K in the plot shown)

100-1 hPa

3.6

2.4

1.2

0.0

-1.2

-2.4

- -3.6 - -4.8 -6.0

- Repeatable from year-to-year (before 1972)
- Reduced following the assimilation of VTPR data (Nov 1972 - Jan 1979)

Investigating biases using ealry hyperspectral sounding data (Nimbus-4 IRIS, 1970)

- IRIS data has been shown to be valuable in improving SH analysis quality (April 1970 January 1971)
- Valuable for assessing biases in ERA5 in previously unobserved regions (eg S. Polar upper stratophere)
- Highest peaking channel is particularly valuable

Climate Change

• During the GNSS-RO era (2006 -) the stratospheric temperature analysis is realistic

Climate Change

- During the GNSS-RO era (2006) the stratospheric temperature analysis is realistic
- In the early period (1940-75) of the reanalysis, few observations constrain the analysis ⇒ model biases are exposed. At 5hPa, temperatures are 10 – 25 K warmer in mid-winter, relative to 2006-2022

During the GNSS-RO era (2006 -) the • stratospheric temperature analysis is realistic

- In the early period (1940-75) of the reanalysis, few observations constrain the analysis \Rightarrow model biases are exposed. At 5hPa, temperatures are 10 – 25 K warmer in mid-winter, relative to 2006-2022
- ERA5 (41R2, 2016) in 1970 is at the top end of this range, with temperatures of 230K in mid-winter

14130

14120

AU9 10

1970

280.0

During the GNSS-RO era (2006 -) the • stratospheric temperature analysis is realistic

Impact of assimilating IRIS on S. polar stratospheric biases

- In the early period (1940-75) of the reanalysis, few observations constrain the analysis \Rightarrow model biases are exposed. At 5hPa, temperatures are 10 – 25 K warmer in mid-winter, relative to 2006-2022
- ERA5 (41R2, 2016) in 1970 is at the top end of this range, with temperatures of 230K in mid-winter
- The CONTROL (48R1, 2022) exhibits the same warm bias

280.0

During the GNSS-RO era (2006 -) the stratospheric temperature analysis is realistic

Impact of assimilating IRIS on S. polar stratospheric biases

- In the early period (1940-75) of the reanalysis, few observations constrain the analysis \Rightarrow model biases are exposed. At 5hPa, temperatures are 10 – 25 K warmer in mid-winter, relative to 2006-2022
- ERA5 (41R2, 2016) in 1970 is at the top end of this range, with temperatures of 230K in mid-winter
- The CONTROL (48R1, 2022) exhibits the same warm bias
- Assimilating IRIS gradually brings temperatures to more realistic values. Note: increase (*I*) from 16th-24th July is associated with an outage of IRIS observations

280.0

During the GNSS-RO era (2006 -) the stratospheric temperature analysis is realistic

Impact of assimilating IRIS on S. polar stratospheric biases

- In the early period (1940-75) of the reanalysis, few observations constrain the analysis \Rightarrow model biases are exposed. At 5hPa, temperatures are 10 – 25 K warmer in mid-winter, relative to 2006-2022
- ERA5 (41R2, 2016) in 1970 is at the top end of this range, with temperatures of 230K in mid-winter
- The **CONTROL** (48R1, 2022) exhibits the same warm bias
- **Assimilating IRIS** gradually brings temperatures to more realistic values. Note: increase (*I*) from 16th-24th July is associated with an outage of IRIS observations
- Using **Constrained VarBC** (Han & Bormann) reduces the bias absorbed by VarBC, and accelerates cooling of the analysis towards more realistic values.

Standard 4D-Var formulation

Climate Change

4D-Var is a common algorithm to find the optimal initial state by minimising the discrepancies with the prior estimate and the observations

Model's equation

 $x_k = \mathcal{M}_k(x_{k-1})$

4D-Var cost function

$$J(x_0) = \frac{1}{2} (x_0 - x_b)^T \mathbf{B}^{-1} (x_0 - x_b) + \frac{1}{2} \sum_{k=0}^{K} [y_k - \mathcal{H}(x_k)]^T \mathbf{R}_k^{-1} [y_k - \mathcal{H}(x_k)]$$

- → Standard formulation assumes that the model is perfect
- → A model trajectory is entirely determined by its initial condition

Weak-constraint 4D-Var formulation

We assume that the model is not perfect, adding an error term η in the model equation

 $x_k = \mathcal{M}_k(x_{k-1}) + \eta$ for $k = 1, 2, \cdots, K$

The model error estimate η contains 3 physical fields (temperature, vorticity and divergence)

→ Introduce additional degrees of freedom to fit background and observations

→ A model trajectory is entirely determined by its initial condition and the model error forcing

➔ Concept of scale separation introduced between background and model errors

 \rightarrow Constant model error forcing over the assimilation window

Laloyaux et al., Exploring the potential and limitations of weak-constraint 4D-Var, 2020

Weak-constraint 4D-Var formulation

We assume that the model is not perfect, adding an error term η in the model equation

$$x_k = \mathcal{M}_k(x_{k-1}) + \eta$$
 for $k = 1, 2, \cdots, K$

The model error estimate η contains 3 physical fields (temperature, vorticity and divergence)

$$J(x_0, \eta) = \frac{1}{2} (x_0 - x_b)^T \mathbf{B}^{-1} (x_0 - x_b)$$

Model initial condition
$$+ \frac{1}{2} \sum_{k=0}^{K} [y_k - \mathcal{H}(x_k)]^T \mathbf{R}_k^{-1} [y_k - \mathcal{H}(x_k)]$$
$$+ \frac{1}{2} (\eta - \eta_b)^T \mathbf{Q}^{-1} (\eta - \eta_b)$$

→ Introduce additional degrees of freedom to fit background and observations

- → A model trajectory is entirely determined by its initial condition and the model error forcing
- ➔ Concept of scale separation introduced between background and model errors
- \rightarrow Constant model error forcing over the assimilation window

Laloyaux et al., Exploring the potential and limitations of weak-constraint 4D-Var, 2020

Model error climatology derived from weak constraint 4D-Var estimates of model error

Model error forcing experiments in 1970 – impact on upper stratospheric temperatures

Climate Change

- For strong constraint & model error forcing experiments: increase in resolution (28km to 9km) helps lower minimum temperatures (230K->223K in June 1970)
- Model error forcing (both types) results in additional cooling of ~5K, with minimum temperatures of 217K
- ... but doesn't bring temperatures to the minimum temperatures expected (from IRIS assimilation experiments) of ~210K
- expect ERA6 (TCo799) will be closer to behavior of TCo1279 experiment shown here.

Verification of impacts of MEF: background fits to IRIS and radiosondes

Background fits to radiosonde temperatures 20^{th} April – 26^{th} August 1970

Verification of impacts of MEF: background fits to IRIS and radiosondes

0

Background fits to radiosonde temperatures 20th April – 26th August 1970

- NN MEF improves bias and synoptic performance
- IRIS provides unique insight into biases in otherwise observation sparse domains
- But significant biases remain (work in progress)

10 ⁻²

10 -1

10⁰

10

10

/ hPa

Pressure

Prospects for reducing model biases in the stratosphere

Climate

Improvements are anticipated from more accurate physical modelling, including:

[1] revised radiation scheme

[2] improved dynamical core

[3] reduction of H₂O in lower stratosphere

[4] Improved representation of GWD

•

•

- **Uncertainties are derived from an inspection / understanding of the system** rather than ascribed after comparison with independent observations
- **Validation** should, ideally, involve a comparison of independent estimates, each associated with it's own independent uncertainty estimate

Possible approaches to determining mean-state uncertainty

The observing system component

- Defined here as "uncertainty in mean state arising from uncorrected biases in the observing system & choice of observing system configuration"
- OSEs with different plausible configurations of observing system, for each epoch
- Simplest approach: withdraw 'redundant' components of observing system and evaluate change in the mean state (next slide)
- Other factors: choice of observational data, bias model, QC/thinning, observation errors, ...

Possible approaches to determining mean-state uncertainty

The model component

- Defined here as "uncertainty in mean state arising from uncertain model parameters and forcings"
- Changes in time, due to the changing observing system
- OSEs with perturbed model parameters & alternative choices of forcings
- Key model parameters? draw upon experience of EPS and climate modelling communities
- Sample time dependence using paired down modern observing system, or run in past epochs

 Perturbed by magnitudes consistent with documented uncertainties and/or giving rise to no significant degradation in forecast skill in OSEs

Validating the mean state uncertainties

Several components of the observing system could be considered 'reference' quality:

- **GNSS-RO** direct traceability chain to time standards
- **GRUAN radiosondes** available post-2010 in numbers
- CrIS well characterised uncertainties
- **GMI** reference MW imager mission

Use (a subset of) these observations passively (*i.e.* withhold from the analysis) to assess the uncertainty estimates from a **benchmark** period in the ERA6 reanalysis (~ 2010-2020, or 2015-2025)

*Benchmark** - defined in this context as " associated with robustly defined uncertainties ideally validated through comparison with traceable independent measurements "

(borrowed from CLARREO, TRUTHS mission concepts)

Summary

- In the treatment of biases many steps forward at ERA5 (RT model biases in IR), some sideways steps (MSU/AMSUA) and some backward steps (stratospheric biases).
- In the short/medium term the prospects are good for improved pragmatic correction (WC 4D-Var / WC 4D-Var MEF) as well as corrections at source (reprocessed data [Paul's talk], stratospheric model biases, improved RT modelling)
- Should we use the 'redundancy' of the very recent satellite era (~2010-2020) to withhold some (subset of) very high quality observations (GRUAN, RO, CrIS, ...) and use these to independently validate ERA6 during a **benchmark** period in the reanalysis (at the cost of a small degradation in analysis quality) as a first step towards methods for establishing the full uncertainty budget for reanalyses products ?

Thanks for listening !

