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Introduction:  The challenge presented by biases

In reanalyses, we aim for :

• continuity

• accuracy - in synoptics and climate

• well characterised uncertainties

Biases present challenges for all three 

aspects

We mitigate biases through:

‘Pragmatic’ approaches

• observation domain – e.g. VarBC

• model domain – e.g. weak constraint 4D-

Var

‘Ideal’ approaches

• improved physical modelling of root 

causes
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Overview

Observational biases

• Radiances in ERA-Interim / ERA5 & future prospects 

• Other innovations

Model biases

• ERA5 stratospheric temperatures

• Weak constraint 4D-Var & model error forcing

• Using early sounding data (IRIS in 1970) to evaluate 

model error correction strategies  

Mean state uncertainties - The systematic component 

Summary / Future Perspectives

Biases:  How are they manifested in reanalyses ?  What do we do about them ?  …  and what next ? 
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latitudinal

bias

(instrumental &

forecast model

contributions)

background errors

• bias ~ background error

~ noise:   O(0.1K)

• For early sounding obs, 

biases are larger

• DA methods assume 

observations unbiased 

wrt background/analysis

• Biases corrected

using variational bias 

correction (VarBC)

Dee, QJRMS, 2005

Auligne et al, QJRMS, 

2007
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Variational Bias Correction in ERA5 – bias model & typical corrections (example : ATMS-7)

+ offset 

+ scan biases 

(to 3rd order)

Accounts for:

• Instrument errors (spectral, radiometric, …)

• Forecast model errors 

• RT model errors

Expect that in time, as instruments & models improve & datasets are reprocessed:  

• The (mean) amplitude of bias corrections reduce; and

• The variance of the bias corrections reduce

• Eventually – the corrections are (i) small & (ii) bounded by the uncertainties
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Instrument biases in the temperature sounding 

channels of MSU, AMSU-A and ATMS

in ERA5 and ERA-Interim
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MSU-3 / AMSU-A7  / ATMS-8 Bias Corrections

ERA Interim

Bias corrections (bold) ± STDEV

of bias corrections (grey)

ERA5

Difference in bias corrections

STDEV of ERA5 bias corrections

MSU-3 / AMSU-A7 / ATMS-8 

(54.96 / 54.94 / 54.94 GHz)

T –sounding, w.fn. peak at 270 hPa

• Improvements MSU - > AMSU-A - > ATMS

(FY-3 MWTS / MWTS-2, Metop-SG MWS ?)

• Little change from ERA-Interim to ERA5

• Suggests model bias and RT related biases 

are less significant than instrument biases

• MSU & AMSU-A possible mechanisms identified:

- Radiometer non-linearities. Zou et al 

(JTECH, 2010) 

- Spectral shifts. Zou et al (JGR, 2011), 

Lu and Bell (JTECH, 2013)

• But disappointing results in NWP testing so far 

(for AMSU-A, Lupu et al, ECMWF TM 770, 2016)

ERA5 – ERA Interim

ERA5.1 – ERA Interim
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MSU-2 / -3  / -4 Bias Corrections

MSU-2 / AMSU-A5 / ATMS-6

Peak 700 hPa

MSU-3 / AMSU-A7 / ATMS-8

Peak 270 hPa

MSU-4 / AMSU-A9 / ATMS-10

Peak 90 hPa

• Similar picture (to MSU-3) for MSU-2 and MSU-4.

• Changes in bias correction wrt ERA-Interim are generally small, with the exception of:

• Aqua AMSU-A 2003-2016

• The period from 2000 - 2006 ( fixed in ERA5.1 )  - see next few slides

• Largest discrepancies AMSU-9 (0.5K), but still detectable in AMSU-7 and AMSU-5

Difference in bias corrections

STDEV of ERA5 bias corrections
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Forward look: Re-characterisation of the MSU instruments NOAA-6 to NOAA-14

• Largest sensitivity of bias to spectral shifts 

expected in MSU channel 3 

• Simultaneous estimation of non-linearity and spectral

shifts carried out – with several calibration models

• Plan to evaluate the impact of the new data  / new 

RT modelling in advance of ERA6 back extension.

(Jon Mittaz,  Univ. Reading)

(Emma Turner,  Met Office)
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Radiative Transfer Model biases 

in the IR sounders 

(HIRS, AIRS, IASI, CrIS and SSU)
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Improvements in RT modelling: HIRS Temperature Sounding Channels 2 - 7 

HIRS-2 HIRS-3 HIRS-4

HIRS-5 HIRS-6 HIRS-7

ERA-Interim

ERA5

Fixed CO2

CO2 varies in time
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Improvements in RT modelling: bias corrections for Adv. IR Sounders in ERA5

• AIRS,  IASI and CrIS channels shown

at ~14μm  (710 - 717 cm-1)  & 

peak in the range 430 - 480 hPa

• AIRS & IASI: assume [CO2] = 376 ppm

CrIS assumes [CO2] = 396 ppm

• HIRS (& SSU & VTPR): assume time

varying [CO2]

Metop-A IASI

AIRS

NPP CrIS
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Improved RT modelling : SSU Bias Corrections

SSU-1

peak 29km

SSU-2

peak 38km

SSU-3

Peak 44 km 

Improved treatment of RT (cell pressure leaks) in ERA5 (Kobayashi, QJRMS, 2009):

• Reduced inter-satellite biases

• Reduced variance in bias corrections

• Reduced drift in biases (NOAA-7 during 1982-1985)

ERA5 uses SSU-3 as an anchor throughout

ERA-Interim uses SSU-3 as an 

anchor until ATOVS (AMSU-14)
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Other innovations

• Reprocessing and data resue efforts for ERA6 (see Paul’s presentation on Wednesday)

• Conventional and satellite data

• Copernicus Climate Change Service work & other work by agencies (EUMETSAT, ESA, 

NOAA/NASA, CMA)

• Improved bias models for ascending-descending / orbital / harmonic biases

• for sounding radiances (Booton et al [2013], Bormann et al [2023])

• also applied to microwave imager radiances

• Correction of biases related to thermal gradients in main mirror for Aeolus winds (Rennie at al, 2021)

• Constrained variational bias correction  (Han and Bormann, ECMWF Tech Memo 782, 2016 )
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Model biases in the upper troposphere 

and stratosphere
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The improved mean state for stratospheric temperature in ERA5.1

• ERA5.1 provides an improved mean state

for stratospheric temperature.

• In the troposphere the difference between

ERA5 and ERA5.1 is very small.

(see A. Simmons et al, ECMWF Tech Memo 859, Jan 2020)

Monthly average observation-background differences from 1979 onwards for 

all assimilated bias-adjusted radiosonde temperature data (K) between 40 and 

60 hPa, for ERA-Interim, ERA5 (based on 1979-Bcli before 2000 and 41r2-B cli 

afterwards) and ERA5.1 (using 1979-Bcli from 2000-2006).

Hersbach, H. et al., 2020 , doi:10.1002/qj.3803

’79 Bcli

’79 Bcli

2016 Bcli

2016 Bcli

RO 

ORIGINAL ERA5  

PRODUCTION

ERA5.1  

PRODUCTION
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Model error manifested in biased first guess departures

NOAA-18 AMSU-A8

fg departures biased by ~25 mK

x

(T)

OBS (and AN)

FG

time 
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Model Error / AMSU-A Mean First Guess Departures in ERA5

ERA5 mean first guess departures shown for AMSU-A

Error bars represent (±1σ) spread over the lifetime of 

each sensor

Consistent picture of :

• a cold model bias mid-trop to mid-strat

• a (larger) warm model bias above 10 hPa

Broadly consistent with analysis increments in ERA5 

(below, from Fig 16, Hersbach et al, 2020)
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Model Error / AMSU-A Mean First  Guess Departures in ERA-Interim

Indications that ERA-Interim:

Exhibits similar biases (to ERA5) above 10 hPa

Exhibits larger biases below 200 hPa

Exhibits smaller biases around 100 hPa. 

ERA5 

analysis increments

ERA-Interim 

analysis increments
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Model Error / AMSU-A Mean First Guess Departures in proto-ERA6  testing (CY48R1)
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• Based on JJA 2020 CY48R1 experiment

• Significant changes since ERA5 cycle (CY41R2, 2016):

• Weak Constraint 4D-Var above 100 hPa

• Improved dynamics: quintic interpolation

• Clear sky ->  all sky scheme for tropospheric channels

• Overall – model in better agreement with observations
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Impacts of model and observation biases in ERA5 

(1) Discontinuities above 10 hPa

Warm bias above 10 hPa

exposed in early period

TOVS 

(SSU)

SSU

NOAA-7

to NOAA-9

ATOVS 

AMSU-A
GNSS-RO

• General problems in reanalysis temperatures above 10 hPa well documented (see SPARC-RIP report 2021).

Few upper air observations

in 1940 (~10 per day)

Full observing system

Including GNSS-RO

(> 20 million obs per day)
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Impacts of model and observation biases in ERA5 

(2) Cold model bias in UTLS - exposed in early period

• Very few observational constraints on stratospheric temperature analysis in the early 1940s – so UTLS cold bias is exposed.

• Analysis increments in 10-200 hPa layer very small 1940 (< 20mK  above 100 hPa as a global mean)
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Impacts of model and observation biases in ERA5 

(3) Cooler than expected anomaly 1972-1979 – VarBC of VTPR

• General problem foreseen & analysed in Eyre (QJ, 2017): with VarBC, if radiances are dominant (cf anchors) model bias is reinforced

• VTPR channels 1 & 2 bias corrected using VarBC – reinforcing model cold bias

• Despite clear benefits (from assimilating VTPR) in improving synoptic analysis – mean state exhibits a discontinuity.

• VTPR exhibits significant radiometric and spectral errors ⇒ we need VarBC 



Climate
Change

Impacts of model and observation biases in ERA5 

(4) Impact of model cold biases 2000-2006

• ERA5 and ERA5.1:  See previous slides
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Upper stratospheric biases in ERA5:  Temperature  anomalies relative to ERA5 climate 

Southern polar statistics 

1960 - 1980 

Global statistics 1940 - 2022

IRIS experiments

• Generally, ERA5 temperature 

analyses above 10 hPa exhibit biases 

and discontinuities

• Particularly large biases evident in 

southern polar winter (>> 6K in the 

plot shown)

• Repeatable from year-to-year (before 

1972)

• Reduced following the assimilation of 

VTPR data (Nov 1972 - Jan 1979)

VTPR assimilated

25
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Investigating biases using ealry hyperspectral sounding data  (Nimbus-4 IRIS,  1970)

26
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• IRIS data has been shown to be valuable in improving SH analysis quality (April 1970 – January 1971)

• Valuable for assessing biases in ERA5  in previously unobserved regions (eg S. Polar upper stratophere)

• Highest peaking channel is particularly valuable 

Channel 193, 668 cm-1
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Evaluation of IRIS radiances relative to ERA5, rocketsondes & SIRS radiances 
(Andrzej Klonecki et al , Spascia)

IRIS Obs vs ERA5

channel 193 peaking at 3 - 30hPa

rocket sondes

vs 

ERA5

Nimbus-4 IRIS  vs SIRS

SIRS /  IRIS 

(ch 8 / ch 193)

colocations for 

July 1970

In summary, relative to :

• Its own climate (1981-2010);

• IRIS observations;

• SIRS observations; and 

• Rocket-sonde data 

ERA5 exhibits a warm bias,  at 36km /  5hPa, of ~15K
27
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Impact of assimilating IRIS on southern polar stratospheric biases

• During the GNSS-RO era (2006 - ) the 

stratospheric temperature analysis is realistic

28
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Change • During the GNSS-RO era (2006 - ) the 

stratospheric temperature analysis is realistic

• In the early period (1940-75) of the reanalysis, 

few observations constrain the analysis ⇒
model biases are exposed. At 5hPa, 

temperatures are 10 – 25 K warmer in 

mid-winter, relative to 2006-2022

Impact of assimilating IRIS on southern polar stratospheric biases

29
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Change • During the GNSS-RO era (2006 - ) the 

stratospheric temperature analysis is realistic

• In the early period (1940-75) of the reanalysis, 

few observations constrain the analysis ⇒
model biases are exposed. At 5hPa, 

temperatures are 10 – 25 K warmer in 

mid-winter, relative to 2006-2022

• ERA5 (41R2,  2016) in 1970 is at the top end of 

this range, with temperatures of 230K in mid-winter

5 hPa temperature

10th July 1970, 00Z

Impact of assimilating IRIS on S. polar stratospheric biases

30
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Change • During the GNSS-RO era (2006 - ) the 

stratospheric temperature analysis is realistic

• In the early period (1940-75) of the reanalysis, 

few observations constrain the analysis ⇒
model biases are exposed. At 5hPa, 

temperatures are 10 – 25 K warmer in 

mid-winter, relative to 2006-2022

• ERA5 (41R2,  2016) in 1970 is at the top end of 

this range, with temperatures of 230K in mid-winter

• The CONTROL (48R1, 2022) exhibits the 

same warm bias

5 hPa temperature

10th July 1970, 00Z

Impact of assimilating IRIS on S. polar stratospheric biases

31
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Change • During the GNSS-RO era (2006 - ) the 

stratospheric temperature analysis is realistic

• In the early period (1940-75) of the reanalysis, 

few observations constrain the analysis ⇒
model biases are exposed. At 5hPa, 

temperatures are 10 – 25 K warmer in 

mid-winter, relative to 2006-2022

• ERA5 (41R2,  2016) in 1970 is at the top end of 

this range, with temperatures of 230K in mid-winter

• The CONTROL (48R1, 2022) exhibits the 

same warm bias

• Assimilating IRIS gradually brings 

temperatures to more realistic values. 

Note: increase (   ) from 16th-24th July is

associated with an outage of IRIS 

observations

5 hPa temperature

10th July 1970, 00Z

Impact of assimilating IRIS on S. polar stratospheric biases

32
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Impact of assimilating IRIS on S. polar stratospheric biases

• During the GNSS-RO era (2006 - ) the 

stratospheric temperature analysis is realistic

• In the early period (1940-75) of the reanalysis, 

few observations constrain the analysis ⇒
model biases are exposed. At 5hPa, 

temperatures are 10 – 25 K warmer in 

mid-winter, relative to 2006-2022

• ERA5 (41R2,  2016) in 1970 is at the top end of 

this range, with temperatures of 230K in mid-winter

• The CONTROL (48R1, 2022) exhibits the 

same warm bias

• Assimilating IRIS gradually brings 

temperatures to more realistic values. 

Note: increase (   ) from 16th-24th July is

associated with an outage of IRIS 

observations

• Using Constrained VarBC (Han & Bormann)

reduces the bias absorbed by VarBC,  and 

accelerates cooling of the analysis towards 

more realistic values.

5 hPa temperature

10th July 1970, 00Z

33
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Standard 4D-Var formulation 

4D-Var is a common algorithm to find the optimal initial state by 

minimising the discrepancies with the prior estimate and the observations

➔Standard formulation assumes that the model is perfect 

➔A model trajectory is entirely determined by its initial condition

Model’s equation

4D-Var cost function
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Weak-constraint 4D-Var formulation

We assume that the model is not perfect, adding an error term η in the model equation

The model error estimate η contains 3 physical fields (temperature, vorticity and divergence)

➔ Introduce additional degrees of freedom to fit background and observations

➔A model trajectory is entirely determined by its initial condition and the model error forcing

➔Concept of scale separation introduced between background and model errors 

➔Constant model error forcing over the assimilation window

Laloyaux et al., Exploring the potential and limitations 

of weak-constraint 4D-Var, 2020
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Weak-constraint 4D-Var formulation

We assume that the model is not perfect, adding an error term η in the model equation

The model error estimate η contains 3 physical fields (temperature, vorticity and divergence)

➔ Introduce additional degrees of freedom to fit background and observations

➔A model trajectory is entirely determined by its initial condition and the model error forcing

➔Concept of scale separation introduced between background and model errors 

➔Constant model error forcing over the assimilation window

Laloyaux et al., Exploring the potential and limitations 

of weak-constraint 4D-Var, 2020

Model initial condition 

Model bias correction
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Model bias correction for ERA6 (using WC-derived model error forcing)

First guess mean error with respect to 

RO temperature retrievals

Sparse observing 

system

(modern system with 

all stratospheric 

observations 

blocklisted)

ERA5-like reanalysis

ERA6-like reanalysis

Recent observing system

Extension of ERA5 to 1940

Few upper air observations exposed the model bias 
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Model error climatology derived from weak constraint 4D-Var estimates of model error

model error estimates at 5hPa

• +/- 30 day average

• smooths synoptic variability

• TCo399 resolution (28km) 

• derived from 2019 – applied in any year

• uses day-of-year as predictor

‘Daily Climatology’

derived from WC-4D-Var low res expt
‘Neural Net Model Error’

derived from operational model error estimate

• derived from June 2020 - Feb2022

• predictors:

• lat & lon

• time of day & month of year

• background state (T)

estimates shown for 1/7/1970        
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Model error forcing experiments in 1970  – impact on upper stratospheric temperatures  

39
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TCo399 (28km) Strong Constraint

TCo399 (28km) Climat. MEF

• For strong constraint & model error forcing experiments:  increase in resolution (28km to 9km) 

helps lower minimum temperatures (230K->223K in June 1970)

• Model error forcing (both types) results in additional cooling of ~5K, with minimum temperatures of 217K 

… but doesn’t bring temperatures to the minimum temperatures expected (from IRIS assimilation experiments)  of ~210K

• expect ERA6 (TCo799) will be closer to behavior of TCo1279 experiment shown here.
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Verification of impacts of MEF: background fits to IRIS and radiosondes
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Channel 193

Background fits to radiosonde temperatures

20th April – 26th August 1970

NH SH

TCo399 (28km)

daily climatology

MEF wrt SC

improvement degradation 
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Verification of impacts of MEF: background fits to IRIS and radiosondes
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Channel 193

Background fits to radiosonde temperatures

20th April – 26th August 1970

NH SH

TCo399 (28km)

daily climatology

MEF wrt SC

TCo1279 (9km)

neural network

MEF wrt SC

improvement degradation 
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• NN MEF improves bias and synoptic performance

• IRIS provides unique insight into biases in otherwise observation sparse domains

• But significant biases remain (work in progress)  
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Prospects for reducing model biases in the stratosphere

Figure 1: Schematic of zonal-mean IFS temperature biases in the middle atmosphere. Red ovals

represent a warm biasand blue ovals a cold bias. The numbers correspond to different biases dis-

cussed in the text.

4. Warm polar mid- to upper stratosphere bias in the winter hemisphere. At present the

reason for this bias is unknown, though it is likely related to deficiencies in the

radiation scheme or ozone climatology, or the resolved waves breaking at too low an

altitude due to too deep a sponge layer. This bias is briefly discussed in section 2.4.4.

The behaviour of T biases shown in Figs. 1 and 2 carries over to forecasts at all lead

times (i.e., for medium-range, extended-range and seasonal forecasts). Therefore, any

model improvements discussed here target all ECMWF forecast ranges.

2.2.1 Global-mean temperature bias: Impact of radiation and ozone

There have been a number of changes to the IFSradiat ion scheme and ozone

climatology in the last five years that have led to improvements in global-mean

stratosphere and mesosphere temperature, as summarized in Fig. 3. The red solid line

shows a configuration very close to IFSCy41r1, operational in 2015, which used the

older “McRad” radiation scheme and the “MACC” ozone climatology. The radiation

scheme was called only every 3 h in this simulation. The red dashed line shows that the

warm bias of up to +8.5 K in the upper stratosphere was reduced to +6.5 K when the

ozone climatology was updated to use a climatology from CAMSin Cy41r2.

As documented by Hogan et al. (2017), this was followed by two improvements to the

treatment of radiative transfer in the stratosphere. Hogan and Hirahara (2016) revealed

that the 3-h radiation timestep could explain around 3 K of the upper-stratospheric

warm bias, and this could be largely mitigated by improving the way that the sun angle

is averaged in time. Now that the radiat ion scheme is called every 1 h in all operational

8 of 70 ECMWF/ SAC/ 49(20)9

Improvements are anticipated from more 

accurate physical modelling, including:

[1] revised radiation scheme

[2] improved dynamical core

[3] reduction of H2O in lower stratosphere

[4] Improved representation of GWD
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Determining the systematic component of uncertainty in reanalysis estimates 

x

Estimate

? x

Estimate

U(x) = Uo(x) ⍟ Um(x)

observing system component

forecast model component

• Uncertainties are derived from an inspection / understanding of the system – rather than ascribed after comparison 

with independent observations

• Validation should, ideally, involve a comparison of independent estimates,  each associated with it’s own 

independent uncertainty estimate 
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Possible approaches to determining mean-state uncertainty

The observing system component

• Defined here as - “uncertainty in mean state arising from uncorrected biases in the observing system 

& choice of observing system configuration”

- OSEs with different plausible configurations of observing system, for each epoch

- Simplest approach: withdraw ‘redundant’ components of observing system and evaluate change in the 

mean state (next slide) 

- Other factors:  choice of observational data, bias model, QC/thinning, observation errors, …

20201950

Uo(x)

Spread in mean state 

due to different 

plausible 

configurations of the 

observing system

mimic earlier epochs using thinned version of modern observing system
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Possible approaches to determining mean-state uncertainty

The model component

• Defined here as - “uncertainty in mean state arising from uncertain model parameters and forcings”

• Changes in time, due to the changing observing system

- OSEs with perturbed model parameters & alternative choices of forcings

- Key model parameters?  - draw  upon experience of EPS and climate modelling communities

- Sample time dependence using paired down modern observing system, or run in past epochs

• Perturbed by magnitudes consistent with documented uncertainties and/or  

giving rise to no significant degradation in forecast skill in OSEs

20201950

Um(x)

Spread in mean 

state due to 

different 

plausible* model 

error 

parameters & 

model forcings

Sample time dependence due to changing observing system
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Validating the mean state uncertainties

• Error bars show 

standard  deviation of 

the applied bias 

correction for all obs

in the cycle

• Bias corrections for 

CrIS mostly 

smaller than the

radiometric 

uncertainties  (±0.14K)

Several  components of the observing system 

could be considered ‘reference’ quality:

• GNSS-RO - direct traceability chain to time standards

• GRUAN radiosondes – available post-2010 in numbers

• CrIS - well characterised uncertainties

• GMI – reference MW imager mission

Use (a subset of) these observations passively 

(i.e. withhold from the analysis) to assess

the uncertainty estimates from a benchmark period in 

the ERA6 reanalysis (~ 2010-2020, or 2015-2025)

Benchmark* - defined in this context as 

“ associated with robustly defined uncertainties

ideally validated through comparison with traceable independent 

measurements ” 

(borrowed from CLARREO, TRUTHS 

mission concepts)
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Summary

• In the treatment of biases - many steps forward at ERA5 (RT model biases in IR), 

some sideways steps (MSU/AMSUA) and some backward steps (stratospheric biases).

• In the short/medium term the prospects are good for improved pragmatic correction 

(WC 4D-Var / WC 4D-Var MEF) as well as corrections at source (reprocessed data [Paul’s talk], 

stratospheric model biases, improved RT modelling)

• Should we use the ‘redundancy’ of the very recent satellite era (~2010-2020) to withhold 

some (subset of) very high quality observations (GRUAN, RO, CrIS, …) and use these to 

independently validate ERA6 during a benchmark period in the reanalysis (at the cost of a small 

degradation in analysis quality) – as a first step towards methods  for establishing the full 

uncertainty budget for reanalyses products ? 



Climate
Change

Thanks for listening !
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