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Please write me an introduction for a presentation about machine learning using ERAS for

the european centre for medium-range weather forecasts annual seminar.

Ladies and gentlemen, esteemed colleagues, and distinguished guests,

| am honored to stand before you today at the European Centre for Medium-Range Weather
Forecasts (ECMWF) Annual Seminar to discuss a topic of paramount significance in the field
of meteorology and climate science—Machine Learning and its transformative role in

harnessing the power of ERAS data.

As we gather here to delve into the cutting-edge advancements in our discipline, it is evident
that the intersection of meteorology, machine learning, and the invaluable ERAS dataset has
the potential to reshape the landscape of medium-range weather forecasting. ERAS, the
latest and most comprehensive reanalysis dataset provided by the European Centre for
Medium-Range Weather Forecasts, represents a treasure trove of high-quality atmospheric

and surface information, spanning four decades. This vast repository of climate data offers

an unparalleled opportunity to push the boundaries of meteorological science and improve

the accuracy and precision of our weather predictions.



What's behind the boom in machine learning?

* Big advances in machine learning architectures, training algorithms and frameworks.

— Transformer architectures.
— Self-supervised training, diffusion modelling.

— PyTorch (and others) with huge community and big-tech support.

* Big advances in computational power.

— GPUs and other accelerators.

— NVIDIA (and others) investing in improving the efficiency of basic algorithmic components.

 Consuming huge amounts of data.

— OpenAl (and others) have trawled the web for all text/images etc.

— Bad data will lead to bad models.
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What kind of things are people using ML to do in the earth system?

Just about everything!




What's behind the boom in machine learning?

» Big advances in machine learning architectures and training algorithms.

» Big advances in computational power.

» Consuming huge amounts of data.

— Learning from observations is hard.
« Data is stored in many different places, and formats.
» Observations change over time ).

 Data has biases and errors.

* Requiring multiple variables can mean using multiple observation datasets.




Reanalysis for machine learning

» Reanalysis provides singular point of “truth”.

* Many variables.

* All times.

« All points in space.

» All accessible from one
access point.
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What are people doing with reanalysis and ML?

» Postprocessing to remove bias, calibrate forecasts...

Downscaling to increased resolution of weather/climate models.

Learn observation operators.

Hurricane forecasting.
e

Input Drivers

Madsle Precitions ~10k references to ERA5, ~2k
wocein Accarino 2023 mention machine learning...

Predict the weather...




Is reanalysis sufficient to learn a global forecasting system?

Simple problem framing.
— Given state of ERAS5 at a random point in time, x(t).
— Construct a model F, a neural network parametrised by weights.
— Predict a future state of ERAS, x( t+dt ) = F( x).

— Seek to minimise [ x(t+dt) - F( x(t) ) ] 2 using gradient descent.

* i.e. change the weights in such a way to decrease the MSE.

— Randomly draw a new x and repeat.
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a very busy and FAST evolving landscape
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What ML
models are
showing...







Time-series of day 6, RMSE over Europe

Same starting point....similar results

Root mean square error | 500hPa geopotential
Europe

T+144 | od oper 0001
180

160 — HF‘:E% oper

m—  PanguWeather

140
120

PanguWeather £

Z =

80

60

40
150°W 120°W

20

Thu1 Tuef Sunil Fri16 Wed 21 Mon 26 Sat31 Thu5 Tue 10 SuniS Fri20 Wed25Mon 30 Satd Thu9 Tue 14 Suni19 Fri24
Dec Jan Feb
2022 2023




What the analysis is showing: an undeniable skill

Anomaly correlation | 500hPa geopotential Anomaly correlation | 850hPa wind speed
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Digging into the scores: RMSE, bias and forecast variability DJF 2022/2023

Why is the RMSE lower in Pangu\Weather?

Power Spectra of single Analysis and Forecast: z250

Approximate scale (km) » Not a clear reduction in forecast activity in
25000 5000 1000

PanguWeather
« ...but smoothing of small scales
« Strong model drift in Pangu
« ...but regional biases are improved

Scope for further investigations to understand
the differences

Power (m*)

Total wavenumber (n




What about
high-impact
events?




Storm Eunice (2.5-day forecasts valid18t" Feb 2022 12UTC)

Observation — green hourglass
IFS HRES - red dot

IFS ENS - blue

Pangu — cyan dot
FourCastNet - magenta
Climatology — red box plot
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UK heatwave 2022
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Cold snap over northern Europe Feb 2023

PanguWeather IES HRES 2m temperature Sodankyla 22 February OOUTC

Observation — green hourglass
IFS HRES - red dot

IFS ENS - blue

PanguWeather — cyan dot
Climatology — red box plot
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Potential discrimination ability (ROC area) for day 6 forecasts
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PanguWeather better for both warm and cold extremes, based on climatological threshold from own climate
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Troplcal cyclones Idalia and Franklin (day 2 forecasts, valid on 30 Aug 2023 O0UTC)
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Tropical cyclone verification

Position error Intensity bias
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What the ML forecasts are showing: potential gain in time and energy

ERAS: ECMWF HRES: Pangu:
_ERAS: 180 000 ($90) 0.3 (<¢1)
15 billion (one off) per forecast per forecast

($7.4Mio (compute only))

(_opernicus

Europe’s eyes on Earth
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Summary/Outlook

Very good scores for PanguWeather initialised from ECMWF analysis

Temperature extremes, cyclogenesis of both extra-tropical and tropical cyclones can be
captured

Similar perturbation growth rate from initial perturbations on synoptic scales

Problem with structure of very intense cyclones
Smooth small scales

Currently not directly predicting precipitation
Missing model uncertainty in ensemble mode
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Project overview: different paths towards a ML ensemble prediction at ECMWF

\

he hybrid mode '
ensemble forecast

A whole system reinventing the path
from observations to predictions.

A scientific challenge
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Results in this talk are mainly from:

d I'X]_V > physics > arXiv:2307.10128 Help | Advanced §
Physics > Atmospheric and Oceanic Physics
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