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Climate Extremes

IPCC AR2 (1996); Zhang et al. (2011) WIREs Climate Change

Measure extremes e.g. as
- Intensity
- Frequency
- Duration
of threshold exceedence



Measures of Climate Extremes

Alexander et al 2019 Environ. Res. Lett., DOI 10.1088/1748-9326/ab51b6 



ETCCDI indices to measure temperature and precipitation extremes

Index Name Definition
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TXx max Tmax Warmest daily maximum temperature

TNn min Tmin Coldest daily minimum temperature

TX10p Cool days Share of days when Tmax < 10th percentile

TN10p Cool nights Share of days when Tmin < 10th percentile

TX90p Warm days Share of days when Tmax > 90th percentile

TN90p Warm nights Share of days when Tmin > 90th percentile

WSDI Warm spell duration 
indicator

Annual number of days with at least 6 consecutive days when 
Tmax > 90th percentile 
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Rx1day Max 1-day precipitation Annual maximum 1-day precipitation

R95p Annual contribution from 
very wet days

Annual sum of daily precipitation > 95th percentile

R10mm Heavy precipitation days Annual number of days when precipitation >= 10 mm

WMO-ETCCDI recommended 27 simple climate indices based on temperature and precipitation data, e.g.:



Monitoring/observing changes in climate extremes

IPCC AR6 (2023) Chapter 11, 
Figs. 11.9, 11.17



Monitoring changes in climate extremes

“State of the Climate in 2022“ report (BAMS, 2023)

Observed anomaly in 2022 
using GHCNDEX ERA5



Different generations of global atmospheric reanalsyes

1950 1980 present

NCEP1 (1948 – )
ERA40 (1958 – 2001)

JRA-25 (1979 – 2014)
ERA-Interim (1979 – 2019)

NCEP2 (1979 – )
MERRA (1979 – 2016 )

NCEP-CFSR (1979 – )
MERRA-2 (1980 – )

JRA-55 (1958 – )
ERA-5 (1950 – )

NOAA-20CRv2 (1871 – 2012)
ERA-20C (1900 – 2011)

Year



Temperature Extremes



Extremes across different datasets

Dunn et al 2022 Front. Clim.; https://doi.org/10.3389/fclim.2022.989505

e.g. annually 
coldest day
(TXn)

e.g. annually 
warmest night
(TNx)

https://doi.org/10.3389/fclim.2022.989505


Discontinuities hamper analyses of long-term changes or anomalies

Dunn et al 2022 Front. Clim.; https://doi.org/10.3389/fclim.2022.989505

Example: temperature discontinuity NCEP2

Daily Tmax Daily Tmin

https://doi.org/10.3389/fclim.2022.989505


Temporal Changes across datasets

Donat et al 2014, J. Climate,
https://doi.org/10.1175/JCLI-D-13-00405.1.

K/10years



Temporal Changes across datasets

Donat et al 2014, J. Climate, 
https://doi.org/10.1175/JCLI-D-13-00405.1.



Extremes across different datasets
Taylor Diagram:
x and y axes: standard deviation of the time series for each dataset; polar axis: correlation with the reference dataset (HadEX3); semi-circles 
centered on HadEX3: values of the root-mean-square difference. 
fainter symbols: reanalyses using complete global land coverage, darker symbols: spatio-temporal coverage matched to HadEX3.

Dunn et al 2022 Front. Clim.; https://doi.org/10.3389/fclim.2022.989505

TNxTXn

https://doi.org/10.3389/fclim.2022.989505


Temporal correlation of extremes with observations (HadEX3), e.g. TXn

Dunn et al 2022 Front. Clim.; 
https://doi.org/10.3389/fclim.2022.989505

20CR CFSR

ERA5 JRA55

MERRA2 NCEP2

https://doi.org/10.3389/fclim.2022.989505


Precipitation Extremes



Extremes Climatology across Observations-Based Datasets

Alexander et al 2020 Environ. Res. Lett. 15 055002 
DOI 10.1088/1748-9326/ab79e2

Intercomparing precipitation indices across a collection 
of (daily) precipitation products in the FROGS database 
(Roca et al 2019):
- gridded in situ data
- Satellite estimates with correction to in situ
- Satellite estimates w/o correction
- reanalysis

https://iopscience.iop.org/article/10.1088/1748-9326/ab79e2/meta#erlab79e2bib30


Global land (50°S–50°N) average timeseries

Alexander et al 2020 Environ. Res. Lett. 15 055002 DOI 10.1088/1748-9326/ab79e2



Large uncertainties in data sparse regions irrespective of product type

CoV (%) calculated over the 2001–2013 
climatologies from the different datasets for 
SDII, CDD and R10mm across precipitation 
products arranged by product type: in situ, 
satellite corrected, satellite uncorrected and 
reanalyses. The number of products 
considered within each cluster is indicated.

Frequency-based indices are more sensitive to product 
than intensity-based indices

Reanalyses generally have largest inter-product spread

Average CoV(%) 
calculated over 2001–
2013 for in situ, 
satellite corrected, 
satellite uncorrected 
and reanalyses) for 
precipitation indices



Precipitation Extremes

Dunn et al 2022 Front. Clim.; https://doi.org/10.3389/fclim.2022.989505

https://doi.org/10.3389/fclim.2022.989505


Temporal Changes across datasets

Donat et al 2014, J. Climate, https://doi.org/10.1175/JCLI-D-13-00405.1.

mm/10yrs



Temporal Changes across datasets

Donat et al 2014, J. Climate, 
https://doi.org/10.1175/JCLI-D-13-00405.1.

Correlations lower than for 
temperature extremes

Clustering of reanalysis ‘families’ 
(ERA*, NCEP*)



Precipitation Extremes
Taylor Diagram:
x and y axes: standard deviation of the time series for each dataset; polar axis: correlation with the reference dataset (HadEX3); semi-circles 
centered on HadEX3: values of the root-mean-square difference. 
fainter symbols: reanalyses using complete global land coverage, darker symbols: spatio-temporal coverage matched to HadEX3.

Dunn et al 2022 Front. Clim.; https://doi.org/10.3389/fclim.2022.989505

https://doi.org/10.3389/fclim.2022.989505


Temporal correlation of extremes with observations (HadEX3),e.g. Rx1day

Dunn et al 2022 Front. Clim.; 
https://doi.org/10.3389/fclim.2022.989505

20CR CFSR

ERA5 JRA55

MERRA2 NCEP2

https://doi.org/10.3389/fclim.2022.989505


Summary for 29 extremes indices

Dunn et al 2022 Front. Clim.; 
https://doi.org/10.3389/fclim.2022.9
89505

Pr
ec

ip
ita

tio
n 

   
   

 |
   

   
   

   
 Te

m
pe

ra
tu

re

Correlation Integrated Quadratic Distance (IQD) standardised

https://doi.org/10.3389/fclim.2022.989505
https://doi.org/10.3389/fclim.2022.989505


Drought



Drought-related variables

Vicente-Serrano et al 2022 Geoscience Data 
Journal https://doi.org/10.1002/gdj3.178

Evaporative Demand (PET) calculated 
following the FAO-56 Penman-Monteith 
approximation,
based on daily data of 2-m maximum and 
minimum air temperature, downward 
surface solar radiation, 10-m wind speed 
and 2-m dewpoint temperature.

https://doi.org/10.1002/gdj3.178


Correlation of SPEI (CRU – ERA5)

Vicente-Serrano et al 2022 Geoscience Data 
Journal https://doi.org/10.1002/gdj3.178

Pearson's r correlation

Standardised Precipitation-Evapotranspiration Index (SPEI)

https://doi.org/10.1002/gdj3.178


Spatial fields of SPEI3 for specific dates

Vicente-Serrano et al 2022 Geoscience Data 
Journal https://doi.org/10.1002/gdj3.178

https://doi.org/10.1002/gdj3.178


Trends

Vicente-Serrano et al 2022 Geoscience Data 
Journal https://doi.org/10.1002/gdj3.178

SPEI z-unit/decade−1

https://doi.org/10.1002/gdj3.178


Time series of global area in drought conditions

Vicente-Serrano et al 2022 Geoscience Data 
Journal https://doi.org/10.1002/gdj3.178

https://doi.org/10.1002/gdj3.178


Storms



Tropical Cyclones Climatology

Murakami 2014 GRL https://doi.org/10.1002/2014GL059519

Most of the reanalyses reproduce a reasonable global 
spatial distribution of observed TCs and temporal 
interannual variation of total TC frequency

Of the six reanalysis data sets, JRA-55 appears to be the 
best in terms of 
• highest skill for spatial and temporal distribution of 

TC frequency of occurrence, 
• highest TC hitting rate, lower false alarm rate, 

reasonable TC structure in terms of the relationship 
between maximum surface wind speed and sea level 
pressure, 

• higher correlation coefficients for interannual 
variations of TC frequency. 

These results also suggest that the finest-resolution 
reanalysis (MERRA) are not always the best in terms of 
TC climatology.

https://doi.org/10.1002/2014GL059519


Tropical Cyclones Climatology

• nearly every cyclone present in IBTrACS over the period 1979–2012 can be found in all six reanalyses 
• TC intensities are significantly underrepresented in the reanalyses compared to the observations
• largest uncertainties in TC identification occur for the weaker storms (exacerbated by uncertainties in the observations 

for weak storms and lack of consistency in operational procedures)
• definite improvements in how well TCs are represented in more recent, higher-resolution reanalyses (e.g. MERRA-2 is 

comparable with the NCEP-CFSR and JRA-55 reanalyses)
Hodges et al 2017 J of Climate https://doi.org/10.1175/JCLI-D-16-0557.1

https://doi.org/10.1175/JCLI-D-16-0557.1


Extra-Tropical Cyclones in long-term reanalyses

Befort et al 2016 Atm Science Letters, https://doi.org/10.1002/asl.694

ERA-20C

Track densities

N
O

AA-20CR m
inus ERA-20C

Regional changes in extreme cyclones (<970hPa)

extra-tropical NH Northern Europe

North Atlantic NH Polar Region

https://doi.org/10.1002/asl.694


Processes driving or amplifying extremes



Relationship between moisture availability and hot extremes

Courtesy Alvise Aranyossy, BSC

ERA5 shows stronger relationship between 
moisture availability (measured as e.g. SPI or 
SPEI) and the number of warm days in summer 
compared to observations in large parts of 
Europe

CopERnIcus climate change 
Service Evolution



Summary and concluding remarks



Summary

There is often a large spread across different reanalyses and observational products with regards to 
measuring different aspects of extremes, and their temporal variations

- Reasonable agreement for temperature extremes, and reasonably robust assessment of long-term 
changes in well-observed regions (caution: inhomogeneities / data discontinuities)

- Large inter-product spread for precipitation extremes (in particular frequency measures), and regionally 
different long-term trends

- Regionally inconsistent drought changes between reanalysis and gridded observation

- Accurate representation of TCs and their tracks since 1979, but intensities too low

- Shortcomings and biases with process-representation in particular at small/local scales



Challenges
Reanalysis is only as good as the model and observations used to generate it!

- Disagreement in regional trends / long-term context
- Large spread/uncertainty across different reanalysis products
- Reanalyses probably not ready to look at long-term trends in precipitation extremes on climate 

timescales especially in regions where we have no (other, ground) data.
- efforts needed on “ground truthing” reanalyses: has to include long-term, homogenous ground 

stations; need to focus on data sparse areas

- Temporal inhomogeneities
- difficulties in obtaining clear information as to the inhomogeneities in any of the reanalyses: when do 

satellites or networks start to (or stop) being assimilated?

- Process representation relevant to extremes
- E.g. resolving processes at higher resolution (storms, convection, etc.)
- Represent and assimilate relevant earth system components (e.g. land surface)

- Useability
- Pre-calculated extremes products would help broader pick-up by researchers with limited 

computational/data facilities



Thank you.

markus.donat@bsc.es



Pattern correlations
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