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Outline of this presentation

€ Classification and advantages of
Coupled DA
€ Review of coupled DA studies in Japan
» Coupled 4DVAR
» Semi-coupled DA
» Full-coupled DA
» Coupled Atmosphere-SST DA

€ Future perspective and development
plan

Coupled 4DVAR

Japanese coupled DA studies history

_

-SST DA

2019-present: Coupled Atm-SST DA
system development in IMA/MRI

Coupled Atm

2014-present: Full-coupled DA system development
iIn IMA/MRI (e.g., Fujii et al. 2021, QIRMS)

Full-coupled DA

2006-2013: Semi-coupled DA system (only
assimilating ocean data) development in JIMA/MRI
(e.g., Fuijii et al. 2009, JCLIM)

Semi-coupled DA

2002-2008 (present?): Coupled 4DVAR system
development in the K7 consortium (consisting mainly of
JAMSTEC and Kyoto University) (e.g., Sugiura et al.
2008, JGR Ocean)




Classification of coupled DA

Full-coupled DA
Both atmospheric
and ocean obs
are assimilated.

g

Strongly coupled DA

€ Information of observations propagates across the sea surface
In an analysis step.
€ E.g., coupled 4DVAR or coupled EnKF

O

Coupled Atm-SST DA

SST is optimized
together with atm

E.g., Akella et al. (2017)

Quasi-strongly coupled DA (e.g., ECMWF-CERA)

€ Although atmosphere and ocean analyses are performed
separately, information of atmosphere and ocean obs can
affects the analysis fields across the sea surface.

€ E.g., outer-loop coupling

. variables in atm analysis

Semi-coupled DA
Only ocean obs are
assimilated to reproduce
slow variations of the

coupled system
E.g., Fujii et al. (2009)

| |

€ Information of observations does not propagate across the sea
surface in an analysis step.

€ Uncoupled atmosphere and ocean DA systems are typically
used with only small changes.

See, Penny et al. (2017)




Outer-Loop coupling with an atmospheric See, Laloyaux et al., 2016,
ADVAR System (Quasi-Strongly Coupled DA) DOI:10.1007/s00382-015-2705-z, 2016.

Observation information propagates across the sea surface
during the coupled model integration

Outer Loop Coupled Model Simulation

, @ Background State
Ocean

Analysis Simulation with the uncoupled atmospheric tangent linear model

Data Misfits

Inner Loop - From Atom. obs '

Sensitivity analysis with the uncoupled atmospheric adjoint model

Atmosphere and ocean analysis routines are used almost as they are, but the
observation information propagate across the sea surface in an analysis step.



% Technical Advantages of Coupled DA

Conventional Method

1. Coupled DA may reduce initial shocks due to imbalance Initial
between the atmosphere and ocean in weather and |
. . : Atmos. DA System Shock
climate predictions with a coupled model.

> Very suitable for Seamless Prediction Imbalance
Coupled
2. Information of observation data associated with the Ocean DA System Model

atmosphere-ocean interface may be able to be

assimilated more effectively. ~_7

> Satellite Brightness Temperature (SST) Using a Couplef DA System

> Satellite Scatterometer (Surface Winds and Currents)

_ CDA System
» Ocean wave observations
» Sea Ice Observations Atmos. Part

> etc. Interactic

Prediction

Ocean Part Coupled
Model




% Scientific Advantages of Coupled DA

€ CDA may be able to represent atmosphere
and ocean interaction more realistically. , , / ,Cool
on

> Negative feedback between SST and I1115ST
Promote

precipitation (Convection)

convecti High SST

» Diurnal Cycle of SST

> Development of tropical cyclones <vAd>

» Madden Julian Oscillation (MJO) LA

» Coupled Atmosphere-Ice-Ocean @
processes (e.g., Polynyas)

» Coastal weather (e.g., sea fogs) SUPPress Low SST

» Extreme rainfall (e.g., atmospheric river) convection

B Potential to generate Coupled Reanalysis This feedback adjusts precipitation,

(avoids the continuous rainfall over
high SST).




Coupled 4DVAR Development




Development of a Coupled A-O 4DVAR System by

Japan K7 consortium in the early 2000s.

> In early 2000s, Japan manufactured the  Setting of the coupled state estimation
Earth Simulator (ES), which is the world € Prediction model (Coupled model)

fastest supercomputer at the time. » AGCM: AFES (T42L24)
> To make effective use of the ES, the » OGCM: MOMS3 (1x1°, L45)
Japanese K7 consortium developed an > IARC Sea ice model, MATSIRO Land Model
adjoint code of a coupled model and a € Assimilated observation data
coupled strong-constraint 4DVAR » NCEP’s BUFR data U,V,T,Q (10daily)
system, and generated a coupled state > SSM/I sea wind scalar x ERA40 wind direction (10daily)
estimation dataset. > Satellite sea surface heigh anomaly data(10daily)

> Reynolds SST (10daily)
> WOD2001 data T,S (monthly) (+ TS from ODA result)
€ 9-month assimilation windows (with 3 month overlapping)

€ The bulk adjustment factor in the flux bulk formula are optimized, as
well as initial conditions, in the coupled 4DVAR system.

F, = —@CM lv|v
F, = pc e, )C,yv|(6, —6)

Forward Model Adjoint Model

Sugiura et al. (2008), DOI:10.1029/2008JC004741 F, = E |V|(qg — q)



How to prevent divergence of the atmospheric

adjoint model in the 9-month calculation

unstable

oxP8 b :

Outer Model: —r = M (x°8) Damping Term
0 Xest

Inner Model: (at ) = M (x°SY) | I'(x®t — xP8)

Time evolution of the first variation:
O(8 (x5t — xb8))}
o bg ot

If this operator has no growing modes, the adjoint
model will not diverse through the long integration.

(M — IN)|6 (xSt — xP8)

xP8: Background state time-evolved by the outer model
xSt 4DVAR estimation time-evolved by the inner model
M: Tangent linear operator of the model M/

| ,.L*”' stable I': Damping Operator
dvo e —— PR = -
The model state is modified only in the stable direction
(slow manifold) by using the attractive (nudging) term to » The University of Hamburg group recently uses similar
the background state in the inner model. approach in their coupled 4DVAR (e.g., Lyu et al., 2018,
See Sugiura et al. 2013 (DOI: 10.1175/MWR-D-12-00231.1) DOI:10.1002/2017MS001194)

for the theoretical Background.



Impact of the flux bulk coefficient

adjustment on the Indian Dipole Mode

» Difference of SST, Sea Level Pressure, and the wind
stress between the coupled model prediction run from
Jul 1997 with the optimized ocean initial condition and
flux bulk coefficient parameters and the run with the
initial condition alone.

» The run with the adjusted bulk coefficients well
represents the development of the Indian Dipole Mode
event, which is not developed in the run without the
adjusted coefficients.

» The relation between westward wind stress and the
decrease of SST in the eastern equatorial Indian ocean
IS properly represented in the run with the adjusted bulk
coefficients.

» Thus, adjustment of the bulk coefficients effectively

=
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reproduce the coupled variation of the atmosphere and PR e o G @SR
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ocean fields in the coupled 4DVAR system.

| | 1 I Il 1
-3 =2 =1 =-0725-05-025025 05 075 1 ?

[°cl



Bulk adjustment factor for momentum optimized
by the Coupled 4DVAR system

Climatological seasonal cycle
The bult factor averaged for of the bulg factor averageilj in Seasonal cycle amplitude of the
1970-2010 (log scale) ) curbati g
the NINO3 region (log scale) mean perturbation wind power
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» The 4DVAR system tends to weaken the momentum coupling in the equatorial Pacific.

» Momentum coupling tends to be weakened in the second half of years.
» The modulation of the seasonal cycle is related to the interannual variation of the bulk adjustment factor.



Impact of the bulk adjustment factor in the ENSO

forecasts

The forecasts were better with (without) the

bulk adjustment factor in the period of a large

(small) seasonal cycle of the wind perturbation

power. » perform the forecasts with switching on (off) the seasonally varying
bulk adjustment factor.

» Diagnose the strength of the seasonal cycle amplitude before
» forecasting.

Case of a

large 3
seasonal
amplitude

NINO3.4 SST Index Error C e 7 custs 72/13-02/08
Reduction from the forecast

w/o the seasonal bulk
adjustment

Iy

NIMD3 4 550 anemaly [50)

with adjustment
w/o adjustment
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Case of a observation 2.0 Il
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amplitude

€ The ENSO forecast error is reduced especially after the spring
barrier.

€ Thus, the bulk adjustment factor estimated by the CDA
system can be used for improving the ENSO Forecasts!!

NINO3.4 SST anomaly (°C)
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Results of Semi-Coupled Data Assimilation

Stimulated by the coupled 4DVAR development by the K7 consortium, JMA/MRI also began
developing a semi-coupled DA system (i.e., weekly CDA without atmospheric data assimilation).



Development of a Semi-coupled DA

System in JMA/MRI

A semi-coupled DA System

>< Not Used
Reconstruct the

Coupled Model (JMA-CPS1) realistic variability of
1 1 1 the Coupled fields

Ocean DA routine
| | | Reflecting slow variations in the

Ocean Observation - seasonal-to-interannual time-scale.

> the coupled 4DVAR study indicated that slow variations of
coupled atmosphere-ocean fields can be largely controlled by
constraining only ocean component by DA.

» JMA/MRI developed a system in which data assimilation is
applied only to the ocean component of the coupled model.

System Flow
month-0

Coupled model
free rrun

First guess

Ocean
3DVAR

Oceanic increment

month-1

month-2

Coupled model ocean assim. run

(Incremental Analysis Updates)

Coupled model
Freerun

First guess

Ocean
3DVAR

Oceanic increment

Coupled model ocean assim. run

v Incremental Analysis Updates (IAU)
with an analysis interval of 1 month.

v Short time-scale variabilities like the
weather modes are not constrained in

the system.




Precipitation Improvement of Semi-

coupled DA over the AMIP Run

We compared the semi-coupled DA result
with an AMIP run (i.e., uncoupled
atmospheric model simulation forced by
observation-based daily SST mapping.)

In the AMIP run, the atmosphere was forced
by the observed SST itself.

In contrast, the SST field in the semi-coupled
DA system had some deviations from the
observed SST.

Therefore, it was natural that the atmospheric
field in the AMIP run is better than that in the
semi-coupled DA system.

However, the monthly climatological
precipitation field had clear improvements
in the semi-coupled DA.

Monthly Climatological Precipitation
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Difference of TC development between

semi-coupled DA and AMIP Run

Semi-coupled DA AMIP Run
Dally SLP and July 1 July 5 July 1 July5

Precipitation Fields ﬁ{& %ﬁ i & \g%
LT .

(July, 1997) T 0] ¢

. i 010 |
ety ! 107z Wi
T (R e e

120E 160E 160W  A20E 160E TE0W 130E T60E 60w  dzob 150E T

July 9 July 13 July 9 July 13

aonf ' = 30N Tog o Fﬁua/ e 1015
|n thIS month’ the %‘w 1010 ——— rL‘PM/ 1910—— ;’D1 }%WD Q_‘_—# /@ﬁuw
precipitation in the L D, TSR S, L SRS

Philippine sea is largely *

1P0C 60E T60W 120E THE T80W 1205 160E 160W 1206 f60E 60w

. . July 21 July 17 July 21
underestimated in the AMIP .o L,! %rfﬁﬂ& SN o Lfram\’_w 2540
; ; . - & T 1016___"2y,
run. 15N P 7 ; 5} Ej 1012% 15N& \1014 ﬁ T\w a \“-—_1|:|l4—_-—f
’ ﬂj .43]@ o= rmw! e 1012 ——1 'E:;;f iz 1u12—~—-——’mﬂ_
EQ ¥ ECy H 4
. S L <\ S & | Porisg, 4\
Although some tropical o o BeSwee o M =
cyclones (TCs) are July 29 July 25 July 29
1 1 a0M ~ 1016 Z0M U Bk 4
developed in the semi- SN aﬁ\ﬂﬁk /\&m&
coupled DA, there isno TC 15N et L i L SRS v s B o=

In the AMIP Run- EG ‘[‘fi d 2 EG i 1;? 7012 'ﬁ H D] &
SEN AN S wit e

! "
120E 1680E 160W 120E 180E 160w 120E 1680E 160w

I I I I T I I I | I I — T I I T T T I I | I I E— —
-] 16 24 22 40 48 g 16 24 22 40 48




Intensification of the Walker Circulation

between semi-coupled DA

Semi- coupled DA
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Climatological SLP,
vertical sheer of zonal
winds (Jun.-Aug. Clim.)
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Vertical sheer of — |
zonal winds :
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» The semi-couped DA properly
represent the monsoon trough, but
the trough is weak in the AMIP run.

» The zonal Walker circulation is
underestimated in the AMIP Run,
but it is improved in the semi-
coupled DA.



Lagged Correlation between NINO3 and W-Y/DU2 indices

(a) W-Y Index (b) DU2 Index W-=Y Index (U, 850nhPa—-200hPa)
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Plots of the correlation coefficients of (a) v The walker circulation is weakened at the winter peak of the El

W-Y index (for the variation of the Walker Nino, which is underestimated in the AMIP run, but well
circulation), (b) DU2 index (for the reproduced in the semi-coupled DA.

variation of the monsoon trough), with the v" The monsoon trough is almost neutral in the previous summer,
NINO3 index against the lag (month) of the and gradually weakened until the next summer. The minimum
W-Y or DU2 indices for JRA-25 (black), of the correlation is attained earlier in the AMIP run, but the
AMIP run (Blue), Semi-coupled DA (Red), strength of correlation and timing is well reproduced in the

and CGCM Free run (purple). semi-coupled DA.



Improvement of the index for

the Walker Circulation

Correlation between SST and PRC in Jun.-Aug.

AMIP Run CMAP-COBESST (Obs.)
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Why the monsoon trough is enhanced

in the semi-coupled DA?

AMIP PRC (1897JJA) Semi-coupled DA pRC (1997JA)
PRC and Velocity e Ul e
Potential at 200hPa (Jun-
Aug, 97)
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In the AMIP run, the peak of the divergence at The zonal contrast is intensified in the semi-coupled
the east of the India suppresses the DA. Thus, the zonal Walker circulation is intensified,
convection in the western tropical Pacific and the atmospheric circulation is improved.



Development of a full coupled Data Assimilation

Using existing atmospheric and ocean DA
components

After confirming the significant potential of the semi-coupled assimilation system, the
Meteorological Research Institute began developing a full coupled data assimilation
system.



JMA/MRI coupled data assimilation system

version 1 (MRI-CDA1)

Day-0 Day-5 Day-10 Day-15

€ Based on the JMA’s operational
atmosphere and ocean DA systems
(NAPEX and MOVE-G2) and the
operational coupled model
(JIMA/MRI-CGCM2) at the time.

The system uses different intervals
for data assimilation cycles of the
atmosphere (6 hours) and ocean
(10 days.)

» Ocean 3DVAR results are inserted
into the coupled model by IAU with
10-day interval. But the model
integrations in the IAU scheme are
substituted by alternate integrations

Coupled model
atmos. assim. run

Oceanic first guess

Ocean
3DVAR

Oceanic increment

Coupled model
afmos. Assim. run

Coupled model A-O assim. run

(Incremental Analysis Updates)

Oceanic increment

Oceanic first guess

Coupled model atmos. Assim. run

18 21 00 03 06 09 12 15
Coupled model

ST, BG

AtmMos. 4DVAR =Yy

Atmas. initial values

Day-20

Coupled model A4
SST, BG

AtmMOS. 4DVAR Xy,

Atmos. Initial values

Y

coupled model \

Coupled model A-O assim. run

18 21 00 03 06 09 12 15
Coupled model
+/Ocean inc.

SST, BG

AtmMOS. 4DVAR Yoy

of the coupled model and
p |- Coupled model A-O assim. run

Atmos. initial values

atmospheric 4DVAR.

The atmospheric 4DVARs are performed twice
between Day-0 and Day-5. This allows atmospheric
fields to adjust to the assimilated oceanic fields. Thus,
this system can be considered as a quasi-strongly
coupled DA system.

-

Coupled model N

+ Ocean inc.
SST, BG

AtmMOS. 4DVAR oy,

Atmos. Initial values

Coupled model
#+ ocean inc,




Reanalysis Experiment CDA

Atmosphere

O Reanalysis experiments are performed for the period from 28 October
Heat/Momentum FJux

2013 to 31 December 2015.

€ CDA: Regular reanalysis run of the coupled data assimilation system, SST I T l l
MRI-CDA1 Sea ice
€ UCPL: All delivery of oceanic data (SST, sea ice, surface current) to
the atmospheric model is stopped. Observation-based gridded SST Ocean
IS used for the ocean surface condition of the atmospheric
component. —
UCPL
O Reference data
v JRA-55: JMA's Atmospheric Reanalysis Data by 4DVAR. The Atmosphere
atmospheric model is different from those in MRI-CDAL. Heat/Momentum Flux
v" GPCP (Objective Daily Precipitation Map) | sst.* ¢ l l
v' COBE-SST (Objective SST Map for climate analyses in JMA) Sea ice><
Ocean




Hovmoller diagram of SST and SAT

between 1-6N

(@) SST in CDA-Exp (b) SST in UCPL-Exp (c) SAT in CDA-Exp (d) SAT in UCPL-Exp
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v" Figure (a) shows SST variations associated with TIWs in CDA, and Figure (c) shows the adjustment of SAT to
the SST variation

v/ SST variations associated with TIWs are not clearly represented in the prescribed SST in UCPL. Thus, the
propagation of SAT variations is hardly seen in UCPL.



Regression of SST, SAT, and surface

winds on SST at 2N and 125W

(a) Reg. on SST at 2°N, 125° W in CDA-Exp (b) Reg. on SST at 2°N, 125° W in UCPL-Exp
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~ v' The regression maps of SST and SAT properly reflect the zonal scale of TIWs in CDA. Winds blowing into the
peak of SST are also reproduced.

v In contrast, the positive regression area of SST and SAT is extended zonally in UCPL, which means that SST

and SAT variations related to TIWs are not properly reproduced. And northerly winds are dominated at the north =
of 3N.



Maps of PRC Lagged Regression on SST (Time scale: 1-10 days)
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Regressions in CDA and Free indicate that the feedback between SST and precipitation adequately works.
UCPL shows no significant relationship between SST and PRC.
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ACC of SST, PRC, SAT with TAO/TRITON on 1-10 days time scale

ﬁmﬁere”ce of the correlation of SST with TAG/TRITON (CDA-UCPL) m Difference of the correlation of PRC with TAO/TRITON (CDA-UCPL)
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m Difference of the correlation of SAT with TAO/TRITON (CDA-UCPL)
v' Coupled data assimilation (CDA) well improves ;) *

SST variation on the daily time scale over the SN
prescribed SST in UCPL.

v As the result, PRC and SAT variations are also
improved in many positions.

v' Thus, coupled DA has some potential to improve 105
near-surface representations.
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Comparison of the Lagged correlation

between SST and precipitation

v" Time series of SST and precipitation averaged in 10°S-10°N,

130-150°E are used.

v" The time series are bandpass-filtered for 20 to 100 days

SST—Rain relation 2014Nov—2015Apr
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CDA reproduces lagged correlation between SST and precipitation (precipitation lags about 10 days behind

SST) better than UCPL and JRA-55.
A similar result based on NCEP reanalyses is also reported by Saha et al. (2010).



How the lagged correlation is reproduced?

AN

Correlation Coefficient

However, time series of precipitation in CDA is almost in phase with UCPL and JRA-55.

Therefore, if we examine correlation of PRC in CDA and UCPL with independent SST, the difference between
CDA and UCPL disappears.

The same result based on NCEP reanalyses was reported by Kumar et al. (2013).

Because the constraint of the atmospheric fields by data assimilation is too strong, the precipitation field cannot
be adjusted to the SST field.

The SST field is adjusted to the atmospheric fields instead.
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AN

Lagged correlations between SST and heat flux components

CDA Run Free Run
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The short wave flux is dominant in the heat budget at the surface. Latent heat flux plays a marginal role.

PRC variation is in phase with the short wave flux and consequently with the net heat flux variation. Thus, SST-
PRC lagged correlation reflects the correlation between SST and the net heat flux.

But, the no lag correlation between SST and precipitation is negative, and the timing of changing the sign of
precipitation anomaly from negative to positive delays from the peak of SST.



Ocean vertical mixing Effect on the SST Variation (10°S-10°N, 130-150°E)

Lagged correlation Lagged Correlation between SST and
SST-PRC vs VAT50-PRC ocean interior temperature (CDA)
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v' Lags of ocean interior temperature behind SST indicates downward heat transfer in the mixed layer.
v" This downward heat transfer significantly affects the SST variation.

v Variation of VAT50 goes across zero at no lag like this, because heat transfer across 50 m depth is not significant,
and the heat budget for upper 50 meter layer is closed.



Comparison of downward heat transfer at eq.-1472E between CDA and Obs.

Lagged Correlation between SST and ocean interior temperature
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v' The downward heat transfer in the mixed layer in CDA is faster than that observed by the buoys.

v This discrepancy causes smaller deviation of the timing that the net heat flux changes the sign from the peaks of
temperature in CDA compared to observation data.



Recent study on the coupled atmosphere-SST DA




Coup|ed Atm-SST DA: E.g., Akella et al. (2017), Frrolov et al.
] (2020), Massart et al (2021)

formulation
5 Add SST to the analysis
SX = ( Xa) — BHT'D1d variables in the atmospheric DA D = HBH' +R
O0X
T =)l
- Ba,a Ba,s Hpa,a Hpa,s Dpa,pa DPG,PS dpa
Bs,a BS,S Hps,a HpS,S Dps,pa Dps,ps dps
Extended Background Extended Tangent Linear Capable to
Covariance Matrix MOdGl"‘ObS Opel’ator aSSImllate ObS
with SST
sensitivity
(Hpa.a Hpa's) = (hpa»a hpa»5> (Ma;a Ma,S) Model+0Obs a=Atm variables
Hpsa Hpsgs hysa hyss J\Msa Mg, Operator s= Sea Surface (SS) variables
pa=Atm obs
ps=SS obs

B ~ (Baa 0 ) M ~ (Ma:a 0 ) Approximation



Sensitivity of SST to the microwave

channels assimilated in the JMA global DA

dTBB/dSST dTBB/dSST
SSMIS_ch17 AMSUA_ch14
SSMIS_ch16 T &€ Observation data of some channels
AMSUA_ch13 . . !
SSMIS_ch14 1 include information of SST
SSMIS ch13 AMSUA_ch12 . o .
- 1 &€ But that information is discarded in
AMSR5_ch13 AMSUA chll .
_c the current JMA’s global DA.
AMSR4_ch11 +
AMSR3_ch9 AMSUA_ch10 & This information can be used if we
AMSR?2 ch7 AMSUA cho apply the coupled atmosphere-SST
+ DA.
TMI_chg AMSUA_ch8
TMI_ché -
TMI_chs AMSUA_ch7
TMI_ch3 AMSUA_ch6 — .
e MHS_ch5 :
- AMSUA_ch5 5
—— MHS_ch4
MHS_ch3 AMSUA_ch4
0 0.1 0.2 0.3 0 -0.02 0 0.02 0.04 0.06 0.08

,l‘
B |

dTBB/dSST (K/K) dTBB/dSST (K/K)

\



Forecast RMSE changes

Coupled Atm-SST DA vs CNTL
(No additional obs)

® TEST=Coupled Atm-SST DA
» Obs data is the same as
CNTL
® CNTL=JMA global NWP routine
® Validation term:Jun 11-Jul 11, 2020

RMSE change rate:

RMSE -nt1—RMSE¢test

%
RH

Pressure level
[1000-1hPa]

Forecast time
0-5 days

* TRUTH=ERAS

The predicted atmospheric variables are Z

clearly improved, especially for the north-
hemisphere and the tropics.
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Microwave data adding experiment
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Forecast RMSE changes GB NH TP SH
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Perspective and the future plan



Requirement of resolving oceanic eddies . Ref.: MGDSST by JMA
for coupled predictions ? (B Using) s Sy

Predicted SST ACC Score Difference (uncoupled atm. PR—coupled PR from uncoupled DAs)
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The coupled prediction improved SST forecasts for 10-day lead times, but degraded SST in areas with oceanic
eddies for 1-day lead time. (Resolution of current ocean DA is not sufficient for resolving eddies.

= It is preferable to use the eddy-resolving resolution for the oceanic DA part of the coupled DA system.



Improving Oceanic Representation in the coupled DA

O We need to improve the oceanic representation to further exploit the advantages of coupled DA.
€ Higer resolution ocean analysis (It is preferable to resolve ocean eddies.) = JMA plans to introduce oceanic
4DVAR with 0.25°x0.25° resolution for the future coupled DA system.

4DVAR (Inner 1°x0.5%) 4DVAR (Inner 0.25%) Objectlve AnaIyS|s (OSCAR)

Test of the oceanic
ADVAR with different
resolutions. Showing
the current speed at the
surface on 21 Mar.
2011.

€ Reproducibility of SST variations in the ocean model should be improved.
» SST diurnal cycle is not reproduced by current ocean models due to the low vertical resolution = Need
to introduce skin SST procedure.
» Our study on the coupled reanalysis showed that inaccuracies in vertical heat transfer in the mixed
layer prevent accurate reproduction of SST variations.= Need to improve the mixing parameterization
€ Sea Ice representation is also important. Former studies reported that sea ice has significant impact in
coupled DAs (e.g., Browne et al., 2019)



Incorporating the coupled Atm-SST DA into

the full coupled DAs

O We plan to incorporate the coupled Atm-SST DA into the current full coupled DA system (in the atmospheric
DA component).

€ Coupled Atm-SST DA is promising. It enables us to use satellite data with sea surface information more
effectively.

€ Need to improve the SST time evolution model (skin SST model?) and coupled Atm-SST statistics
€ Is it possible to assimilate SST data both in the atmosphere and ocean DA components?
» It may be OK because the targeted time scales of the Atmospheric and oceanic DAs are much different
(Increments of both DAs are likely independent.)

2] 5XAthA 6Xatm + 5X0anO 5X0cn + {H(X + 5Xatm + 5XOcn) y } R_l {H(X + 5Xatm + 5X0cn) Y}
a]/0(5)(Ocn) 36 5X0cn+ H'R™! {H(X + 5Xatm + 5X0cn) Y} =0

8Xoen = Boen HT (HBo HT 4+ R)"HH(xP + ¢ ) —y } Increment of Atm DA
(Also see, Souopgui et al. 2020, DOI:10.1016/j.ocemod.2020.101683)

€ Is a special method to reflect SST increments from the coupled Atm-SST DA to the ocean component
necessary?

> It may not be necessary because SST adjusts to the modified heat fluxes from the atmosphere.




Toward the strongly coupled DA

O The best way to get the analysis fields consistent between the atmosphere and ocean(?)
O Coupled 4DVAR? = Development of a coupled adjoint model requires considerable human resource.
O EnKF and EnVar are more promising?

€ It is difficult to obtain reasonable correlations between atmosphere and ocean mainly due to large difference
of the time scale.

€ How do we obtain the cross correlations?
> Take the correlation of the ocean variables with the time-averaged atmospheric variables.
K= Cov{Xocn, HXatm M Cov(HX 3¢, HX5em) + Cov{(Yarm, Yatm>}_1

8Xatm to ocn = KVaem — HXaom)  (See, Lu et al., 2015, DOI: 10.1175/MWR-D-14-00322.1)

» Sophisticated localization. E.g., cutoff the correlation according to the prescribed statistics from the

preliminary ensemble (or long-term) simulations (e.g., Yoshida et al., 2018, DOI: 10.1175/MWR-D-17-
0365.1, Necker ey al, 2023, DOI:10.5194/npg-30-13-2023)

» Use machine learning.
» Other methods?



. - : ek Yoshida (2019), PhD Thesis,
Example of Localization using statistical [ wiidediny-IRNpmp sy ey

cutoff estimated by a neural network 4¢1d-8216-7d690522fc2d
Kalnay el al. (2023), doi:10.5194/npg-30-217-2023
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https://drum.lib.umd.edu/items/6012edb4-5551-4c1d-8216-7d690522fc2d
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Incorporating the coupled Ocn-Atm boundary layer DA

into the full coupled DAs

O Uncoupled Ocean DA tends to generate imbalance between the wind stress and the pressure gradient.

» This imbalance should be modified by correcting the atmospheric forcing in the coupled Ocn-Atm boundary
layer (AtmBL) DA (e.g., Storto et al. 2018).

O Coupled Ocn-AtmBL DA may also improve the atmosphere-SST relation.
O This is the oceanic counterpart of the coupled Atm-SST DA.
O Coupled Ocn-AtmBL DA can also be incorporated in the current full coupled DA.
> If we do so, we need to consider how to reflect the increments on the BL to the atmospheric component.
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Introduction of SynObs



\f swmhs ﬁ\x Synergistic Observing

@ N OM waie rroleet | INETWOrK for Ocean Prediction
' & Objective Led by OceanPedict OS-Eval TT

SynObs will seek the way to extract maximum benefits from the combination
among various observation platforms, typically between satellite and in situ
observation data, in ocean predictions.

€ Strategy
SynObs aims to identify the optimal combination of different ocean observation
2021 United Nations Decade

of Occeel Soibree platforms through observing system design/evaluation, and to develop
2030 for Sustainable Development
assimilation methods with WhICh we can draw synerglstlc effects.

——— —

SynObs Co-Chairs: Y. Fujii (JMA/MRI) Elisabeth Remy (Moi)
SynODbs

E-Mail: synobs@mri-jma.go.|p
Contact https://oceanpredict.org/un-decade-of-ocean-science/synobs-2/

—

SynObsML@googlegroups.com
Please mail to synobs@mri-jma.go.jp for joining

Mailing List
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s Outline of SynObs Activity Plan

1. Collaboration for evaluation and design

» Collaboration on a Multi-System OSE and OSSE (SynObs
flagship OSES/OSSES)

» Establish a best practice based on the collaboration above.
2. Supporting DA scheme development
» Share the information on the development of DA schemes

» Planning of observation campaigns for DA scheme
development

3. Providing information from ocean prediction systems in real time
» Explore the methods to evaluate observing system status in real-time
4. OS-Eval showcase and reporting

» Introduce OS-Eval examples to demonstrate its potential (Special collection in Frontier Marine
Science, Science Session in Ocean Science Meeting 2024, Showcase webpage, etc.)

» Contributing to WMO Observation Impacts workshop and Rolling Review of Requirement (RRR)



Y¢ Plan of SynObs Flagship OSEs/OSSEs

SynObs plans to implement OSEs/OSSESs using various
ocean prediction systems with a common setting.
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Self Introduction
Yosuke Fujii

Affiliation :JMA Meteorological Research Institute (2000-present)
Job Title  : Senior Research Official

Degree : Ph. D (Kyoto University, 2003)
E-Mail : yfujii@mri-jma.go.jp

Research Fields
€ Development of JMA's Oceanic 3DVAR/4DVAR System

» Introductive paper of the current JMA's global oceanic 4DVAR System (Fujii et al. 2022,
doi:10.3389/fclim.2022.1019673)

€ Coupled DA (DA: Data Assimilation)

» Semi-coupled DA (Fuijii et al. 2009, do0i:10.1175/2009JCLI12814.1)

» Full-coupled DA with outer-loop coupling (Fujii et al., 2021, doi:10.1002/qj.3973)
€ Evaluation of ocean observation impacts in ocean/coupled prediction systems

» Co-chair of OceanPredict Observing System Evaluation Task Team L i o
» Co-chair of UN Ocean Decade Project SynObs &

@# UN Ocean Decade Project



w Maps of PRC Lagged Regression on SST (Time scale: 10-60 days)
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v It should be noted that the regression of PRC on SST is negative in the tropical area.
v' The positive regression with 7-day lag and the negative one with 5-day lead are amplified in CDA.
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MRI-CDA1 MRI-CDA2

CGCM  Atm:TL159 (~110km)  Atm: TL959 (~20km)

Configuration of MRI-CDA2

Ocn: 0.5°x1° Ocn: 0.25° x 0.25°
Atm DA 4DVAR (every 6h) 4DVAR (every 6h)
Inner: TL159 (~110km) Inner: TL319 (~60km)
Ocn DA 3DVAR (every 10d) 4DVAR (every 1d)
System Flow Inner: 0.5" x 1° Inner: 0.5" x 1°
OOh 24h 48h 72h

CGCM+ € Higher resolution

Ocn Inc € Ocean 4DVAR

€ More frequent ocean analysis
@ Still Weakly coupled DA

| O Currently performing the
CGCM+ | coupled reanalysis for 2020
Ocn+Inc with this system




Forecast RMSE changes Global ~ N-Hemisphere Tropics S-Hemisphere
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