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Data Assimilation Fundamentals

A Uni� ed Formulation of the State 
and Parameter Estimation Problem

� is open-access textbook’s signifi cant contribution is the unifi ed derivation of data-
assimilation techniques from a common fundamental and optimal starting point, namely 
Bayes' theorem. Unique for this book is the “top-down” derivation of the assimilation 
methods. It starts from Bayes theorem and gradually introduces the assumptions and 
approximations needed to arrive at today's popular data-assimilation methods. � is 
strategy is the opposite of most textbooks and reviews on data assimilation that typi-
cally take a bottom-up approach to derive a particular assimilation method. E.g., the 
derivation of the Kalman Filter from control theory and the derivation of the ensemble 
Kalman Filter as a low-rank approximation of the standard Kalman Filter. � e bottom-
up approach derives the assimilation methods from diff erent mathematical principles, 
making it diffi  cult to compare them. � us, it is unclear which assumptions are made to 
derive an assimilation method and sometimes even which problem it aspires to solve. 
� e book's top-down approach allows categorizing data-assimilation methods based 
on the approximations used. � is approach enables the user to choose the most suit-
able method for a particular problem or application. Have you ever wondered about 
the diff erence between the ensemble DVar and the “ensemble randomized likelihood” 
(EnRML) methods? Do you know the diff erences between the ensemble smoother and 
the ensemble-Kalman smoother? Would you like to understand how a particle fl ow is 
related to a particle fi lter? In this book, we will provide clear answers to several such 
questions. � e book provides the basis for an advanced course in data assimilation. 
It focuses on the unifi ed derivation of the methods and illustrates their properties on 
multiple examples. It is suitable for graduate students, post-docs, scientists, and prac-
titioners working in data assimilation.
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Data assimilation minimises a cost function to fit a model to observations
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Current data assimilation methods are computationally too expensive
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Data assimilation provides information about our models and their
uncertainties
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Who loves linear algebra?
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Why data assimilation in earth systems?

Introduction Available from: https://github.com/geirev/Data-Assimilation-Fundamentals Slide 7 / 57

https://github.com/geirev/Data-Assimilation-Fundamentals


  

Why data assimilation in earth systems?

• improving re-analysis
• improving forecasts
• scenario modelling (’what if?’)
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Application areas in Earth Systems (biased view)

NASA
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Different objectives of data assimilation

What to estimate
• state estimation (initial conditions, time

evolution)
• parameter estimation

(Glegola et al., 2013)

(MERCATOR)
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Common classification (I)

• Ensemble methods
I Ensemble Kalman Filter (EnKF)
I Ensemble Smoothers: ES, ESMDA, IES

• Variational methods
I 4D-Var, En4DVar
I Randomized Maximum Likelihood (RML),

EnRML
• Nonlinear methods
I Particle Filter
I Particle Flow Filter

EnKF (Reichle, 2002)

4DVar (ECMWF, 2017)
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Common classification (II)

• Smoothers
I (Ensemble) 4D-Var
I (Ensemble) Randomized Maximum

Likelihood (RML, EnRML)
I Ensemble Smoothers: ES, ESMDA, IES

• Filters
I Kalman Filter, Extended Kalman Filter
I EnKF
I Particle Filter, Particle Flow Filter

General smoother

0 2 4 6 8 10 12 14 16 18 20 22 24

General smoother update

Time (hours)
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Recursive smoother
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Sequential ensemble-smoother update
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General filter
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Iterative ensemble smoother
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Assimilation window Ensemble prediction
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Overview of approximations and methods

Bayes’ formula

A.1 Markov model

A.2 Independent data

A.3 Filtering solution

Recursive Bayes’ formula

A.4 Gaussian priors

A.9 Particle representation

A.5 Model linearization

Recursive Bayes’ and Gaussian priors

A.6 RML sampling

Ensemble of cost functions

A.8 Ensemble covariances

Low-rank ensemble methods

A.7 Averaged model sensitivity

Ensemble of approximate gradients

A.5 Model linearization

Closed form solution

Representer method,
4Dvar, Gauss-Newton Extended Kalman filter

En4DVar with station-
ary background matrix

Particle filters and flows

En4DVar and
IES with adjoints

EnRML, ESMDA

EnKF, EnKS, ES
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We start from Bayes’ theorem

f (Z |D) = f (D |Z) f (Z)
f (D)

• Z = (z0, z1, . . . , zL) is the vector of state variables on all the assimilation windows.
• D = (d1, . . . , dL) is the vector containing all the measurements.
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Split time into data-assimilation windows

zl−1 zl zl+1 zl+2
dl−1 dl dl+1 dl+2

timetl−1 tl
t0 tk tK

tl+1 tl+2 tl+3

• We consider the DA problem for one single window.
• Errors propagate from one window to the next.
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Weather forecasting approach

0 2 4 6 8 10 12 14 16 18 20 22 24

Assimilation window Ensemble prediction

Time (hours)
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Model is Markov process

Approximation 1 (Model is 1st-order Markov process)
We assume the dynamical model is a 1st-order Markov process.

f (zl |zl−1, zl−2, . . . , z0) = f (zl |zl−1)

Bayes Available from: https://github.com/geirev/Data-Assimilation-Fundamentals Slide 27 / 57

https://github.com/geirev/Data-Assimilation-Fundamentals


  

Independent measurements

Approximation 2 (Independent measurements)
We assume that measurements are independent between different assimilation windows.

Independent measurements have uncorrelated errors

f (D |Z) =
L∏

l=1
f (dl |zl) (23)
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Bayes becomes

f (Z |D) ∝
L∏

l=1
f (dl |zl)

L∏
l=1

f (zl |zl−1) f (z0) (24)
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Recursive form of Bayes

f (z1, z0 |d1) =
f (d1 |z1) f (z1 |z0) f (z0)

f (d1)
, (25)

f (z2, z1, z0 |d1, d2) =
f (d2 |z2) f (z2 |z1) f (z1, z0 |d1)

f (d2)
, (26)

...

f (Z |D) = f (dL |zL) f (zL |zL−1) f (zL−1, . . . , z0 |dL−1, . . . , d1)
f (dL)

. (27)
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Make use of Markovian property

f (z1 |d1) =
f (d1 |z1)

∫
f (z1 |z0) f (z0) dz0

f (d1)
=

f (d1 |z1) f (z1)
f (d1)

, (28)

f (z2 |d1, d2) =
f (d2 |z2)

∫
f (z2 |z1) f (z1 |d1) dz1

f (d2)
=

f (d2 |z2) f (z2 |d1)
f (d2)

, (29)

...
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Filtering assumption

Approximation 3 (Filtering assumption)
We approximate the full smoother solution with a sequential data-assimilation solution. We only
update the solution in the current assimilation window, and we do not project the measurement’s
information backward in time from one assimilation window to the previous ones.
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Bayes’ for the assimilation window

f (z|d) = f (d|z) f (z)
f (d) (30)
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Sequential data assimilation (EnKF, EKF, PF, PFF)

after Tandeo et al., 2018
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Posterior is product of prior and likelihood
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Posterior is product of prior and likelihood
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Concept of particle filtering

t=t+1

t=t

Ensemble of N realisations (particles) to estimate pdf
evolution

Posterior is proportional to prior
times likelihood
Prior:

f (z) = ΣN
j=1

1
N
𝛿(z − zj)

Likelihood:
f (d|z) = 1

𝜎
√

2𝜋
exp− 1

2 (
d−z
𝜎
)2

(Gaussian, can also be Lorentz
function)
Posterior:
f (z|d) ∝ f (d|z)f (z)
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Particle filters for nonlinear data assimilation

Approximation 9 (Particle representation of the pdfs)
It is possible to approximate a probability density function by a finite ensemble of N model states
(or particles) as

f (z) ≈
N∑︁

j=1

1
N
𝛿(z − zj), (31)

where 𝛿(·) denotes the Dirac-delta function.
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Importance sampling Monte Carlo

Use Monte Carlo samples to approximate the probability:

• generate N pseudo-random realisations zj from f (z|d) with j = 1, . . . ,N.
• evaluate for each realisation the outcome of the forward model and compute the arithmetic

average of the results.
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Importance sampling Monte Carlo

Approximate the distribution f (z|d) by:

f (z|d) =
N∑︁

j=1
wj𝛿(z − zj), (32)

where 𝛿zj is a Dirac delta, and likelihood weights wj are given by

wj =
f (d|zj)
f (d) =

f (d|zj)∑N
j=1 f (d|zj))

. (33)

denominator: normalization to ensure the weights add up to one,
f (d) =

∫
f (d|z)f (z) dz ≈ ∑N

j=1 f (d|zj).
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Degeneracy

Size of circles indicates weight

van Leeuwen, 2017, 10.5802/afst.1560

Samples that are closest to observations
obtain largest weight. Some samples
move very far from the observations
and obtain a low weight. This means
that effectively, there are only few
samples left!
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Importance Resampling

Size of circles indicates weight

van Leeuwen, 2017, 10.5802/afst.1560

Samples that are closest to observations
obtain largest weight and are being
duplicated. Low weight samples are
removed from the ensemble.
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Current challenges in data assimilation

• Estimating full distribution of uncertainty
• Dealing with nonlinearities
• Avoiding degeneracy and reducing computational costs
• Estimating model error
• Using data-assimilation outcomes to improve models
• Coupled data assimilation
• Support decision making
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Examples (I)
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EnKF with the Lorenz ’63 model

𝜕x
𝜕t

= 𝜎(y − x), (34)

𝜕y
𝜕t

= 𝜌x − y − xz, (35)

𝜕z
𝜕t

= xy − 𝛽z. (36)

x
y

z
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Ensemble Smoother

General smoother
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General smoother update

Time (hours)
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General Filter (EnKF)

  

General filter

0 2 4 6 8 10 12 14 16 18 20 22 24

General ensemble-filter update
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Recursive smoother, EnKS

  

Recursive smoother

0 2 4 6 8 10 12 14 16 18 20 22 24

Sequential ensemble-smoother update
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Examples (II)
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Particle filter, particle flow filter and EnKF for earthquake forecasting

Available data:

1. Ground motion (GPS, seismometers)
2. Occassionaly, a subsurface measurement of strain

Challenges:

1. Very little data
2. Uncertainty in both model and observations
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State- and parameter estimation with a 0D Burridge-Knopoff model

-8 -6 -4 -2 0 2 4
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𝜕\

𝜕t
= −v(\ + (1 + Z) ln v),

𝜕u
𝜕t

= v − 1 + [,

𝜕v
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(
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b

(
\ + ln v

) )
,

Banerjee et al. (NPG, 2023):
https://npg.copernicus.org/articles/30/101/2023/

Parameter bias: Seismic cycle with ’true’ (0.7) and ’biased’ (0.6) Z parameter
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State vs State-Parameter estimation, using a particle filter
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Shear-stress estimate with particle filter, for coseismic phase
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PF tends to estimate shear stress better than EnKF
EnKF

t = 24 
24

t = 76 
76

t = 72 
72

t = 20 
20

PF

𝜏 𝜏𝜏𝜏
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Ongoing: Burridge-Knopoff compared to Lorenz
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Data assimilation methods
• can be derived based on Bayes’ theorem
• provide information on model and data uncertainty
• need to deal with nonlinearities in the model
• can suffer from degeneracy and high computational costs

Current challenges:

• Estimating full distribution of uncertainty
• Dealing with nonlinearities
• Avoiding degeneracy and reducing computational costs
• Estimating model error
• Using data-assimilation outcomes to improve models
• Coupled data assimilation
• Support decision making
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Thank you!

More details:

• Evensen, G., F.C. Vossepoel, P.J. van Leeuwen, Data Assimilation Fundamentals, open access,
Springer, 2021

• Banerjee et al (NPG, 2023): https://npg.copernicus.org/articles/30/101/2023/
• Diab-Montero et al (in preparation)
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