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Ocean and sea-ice reanalysis at ECMWF
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A2) 1994 - 1996
ERA-15

1) 1979 - 1981
FGGE

3) 2001 - 2003
ERA-40

4) 2006 - 2019
ERA-Interim

5) 2016 - …
ERA5

Atmosphere/land                                    including ocean waves

6) 2024 - …
ERA6

2024 - … 
ORAS6/OCEAN6

Next generation

2004/2006
ORAS2/ORAS3

2010 
ORAS4

2016
ORAS5/OCEAN5

Ocean                                                       + Sea ice

2014
ORAP5

2019
ORAP6
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1997
ORAS1

Ocean reanalysis development at ECMWF was 

closely linked to the seasonal prediction system 

development in the 90’s (SEAS1 in 1997)

→ Need for an ocean model and assimilation and 

ocean reanalysis
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Ocean and sea-ice reanalysis at ECMWF

ORAS3

ORAS4

ORAS5: 

ORAS6

NEMOv3 ¼-deg + LIM2, +Sea-Ice DA

NEMOv3 1-deg; 3DVar-FGAT; +SLA DA 

RT stream
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Zuo et al., 2018, TM 823

HOPE, OI 

NEMOv4 + SI3, En3DVar, +SST DA 

ORAS5/OCEAN5 provides ocean and sea-ice initial conditions for all ECMWF coupled 

forecasting system (Zuo et al., 2018). OCEAN5 also provides SST and SIC conditions for the 

ECMWF atmospheric analysis system (Browne et al., 2018) 
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Applications of ORAs 
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• Forecasting: initialization of coupled forecasts 

• NWP, monthly, seasonal, decadal 

• Calibration and reforecasts

• Verification/evaluation/co-design of Global Ocean observing network (OSE/OSSE)

• Climate applications

• reconstruct & monitor the ocean (ECV/EOV); 

• study EEI and energy/water cycle;

• Towards coupled DA system (weakly -> quasi-strong -> strong …)

• Other Commercial applications (oil rigs, ship route …), safety and rescue, environmental (algii

blooms, spills)
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Applications: sub-seasonal to decadal forecasts

Seasonal Decadal forecastsExtended-rangeMedium-range

sunlight

Deep ocean

Sea surface Thermocline depth Deep ocean Upper ocean (mixed layer)

Mogensen et al., 2017: 

“…  the upper ocean 

stratification is the key 

in determining the 

strength of the coupled 

feedback (of tropical 

cyclone forecasts).” 

From GHRSST 
Introduction to oceanography,

Paul Webb

ECMWF AS2023, READING 7



Applications: calibration and reforecasts

Reforecasts are needed for

Calibration: dealing with model error

Detection of Extreme Events

Skill estimation

-Tailored products (health, energy, agriculture)

Ocean/Atmosphere/Sea-ice/Land reanalyses
Real time Probabilistic 

Coupled Forecast

time

Reforecasts require historical  reanalyses for initialization, consistent with real-time initial conditions



Applications: observing system co-design and impact studies 
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Maps of normalized RMSD of Temperature (upper 700m) in OSEs

Zuo et al., 2019, Ocean Science

Remove Moored buoys

Remove all in-situ

Remove CTD/XBT/MBT

Remove Argo

RMSD w.r.t a 

reference reanalysis, 
in which all in-situ 
data are assimilated. 

Maximum AMOC fluxes (in Sv) at 26.5 N

excluding Argo obs

During 2009/2010, there was a transient 

30% weakening of the AMOC driven by 
anomalies in geostrophic and Ekman 
transports (Roberts et al,. 2023)
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Ocean heat content changes

Balmaseda et al., 2013

ORAS4 suggests that there is more heat absorbed by 

the deeper ocean after 2004.

Applications: monitoring climate signals

ORAS5 NRT monitoring of OHC300

https://charts.ecmwf.int/catalogue/packages/oras5_nrt/

ORAs provides continuous coverage of the global oceans constrained by law of physics and observations input, and 

therefore can resolve higher frequency variability in ocean than methods that rely primarily on in situ data. 

Indian Pacific Atlantic
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Perturbed 

Observations NEMOv3.4 + LIM2

Innovations

Increments

IAU

3DVar-FGAT (Deterministic B)

Sea-ice 

conc.

Ocean state 

variables

Observations:

• In-situ T/S prof.

• SIC (L4)

• SLA

• SST (nudging)

• Wind stresses

• Net precip.

• Solar radiations

Perturbed Forcings (6/24 hrs)

Deterministic ocean and 

sea-ice analysis

ORAS5 system

background

ECMWF ORAs systems

ORAS5 is deterministic ocean and 

sea-ice reanalysis

• 5 member generated with perturbed 

forcing and observation inputs.

• Each member is a deterministic 

analysis produced with 3DVar-FGAT 

approach.

• No feedback between ensemble 

backgrounds and Covariance B

Zuo et al., 2018



Numerical model in ORAs: ocean model

ECMWF AS2023, READING

Snapshot of the Gulf Stream from different
NEMO V4 configurations (top left 1°, top right

0.25, bottom left 1/12) compared to the
OSTIA observation SST production (bottom

right).

ECMWF AWS2023

Numerical model will always be prone to biases, due to unsolved and poorly represented processes 

(model resolution, parameterisations, boundary conditions …).
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1 deg ¼ deg

1/12 deg OSTIA



Numerical model in ORAs: ocean model

ECMWF AS2023, READING

Mean SST biases
Same model resolution and forcings; without data assimilation

Verified against ESA CCI2 SST

Different numerical models (ocean and sea-ice), and the same model but in different configurations, 

can have very different characteristics and biases patterns. To “correct” them will impose different 

constrains on DA method and/or observation input.

NEMOv3.4 NEMOv4

• NEMOv3.4 used CORE bulk formula

• NEMOv4 used IFS bulk formula 
• Differences in mixing due to parameterisations in the 

TKE scheme
14



Numerical model in ORAs: sea-ice model

ECMWF AS2023, READING

Mean SIC biases (Sep)
Same model resolution and forcings; without data assimilation

Verified against OSTIAv2 SIC
LIM2 SI3 (multi-cat.)

15

• The sea ice state is important for setting the flux exchange between the polar oceans and the overlying 
atmosphere. 

• More complex models (like SI3) may help better capture the evolution of the ice but may also be more 
challenging to constrain with our assimilation systems.

LIM2

SI3

NH ice conc bias (1996-2019) 
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Considerations with SIC DA in SI3 (multi-category sea-ice 

model with melt ponds)

• How to distribute increments among different thickness 

categories

• Where to apply sea-ice increments in the ice time-

stepping scheme 

• Introduce thermodynamic balance between sea-ice 

and ocean state variables

• Grow sea-ice from open water with DA increment

• Interaction between sea-ice increment and ice 

advection

Numerical model in ORAs: sea-ice model
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Atmospheric boundary conditions

ECMWF AS2023, READING

SST difference is mostly due to changes in ERA5 shortwave/longwave radiations. 
SSS difference is directly related with precipitation changes in ERA5

ERA5 vs ERAint
Same model version, no data assimilation

• Earth sub-system reanalysis requires some boundary conditions (ocean/sea-ice/land/wave/atmosphere).

• ORAs is driven by atmospheric forcings (wind stresses, net precipitations, solar radiations) as well as land 

freshwater input.

Mean SST difference Mean SSS difference
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October 29, 2014

Ocean in-situ observation is about 1/1000 to 1/10000 

smaller than Atmospheric observation

ECMWF AS2023, READING

• Ocean in-situ observing network is very sparse compared 

to Atmospheric observations 

• Very uneven distribution of observations. Southern ocean 

was poorly observed until ARGO period. Deep ocean still 

under sampled (Deep Argo).

• Discontinuity is normal: Lack of funding; expensive and 

difficulty to maintain; relies on local contributions 

Ocean in-situ observations

0 150 300 450 600

Atmosphere

Ocean 

Obs used (M) Obs received (M)
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October 29, 2014ECMWF AS2023, READING

• Satellite provide important 

observations on monitoring sea 

surface states (SST, SSS, sea-ice 

states, sea surface height, surface 

currents, ocean color, etc). 

• These sea surface observations are 

essential input for ocean and sea-

ice reanalysis system and works as 

complemental data sources to the 

ocean in-situ observing networks.

• Challenge to deal with various data 

densities among different in-situ 

types, and between in-situ and 

satellite observations.

Satellite sea surface observations

Sea-Level Anomaly (Altimeter)Sea-ice thickness

Sea-ice concentration
SST (IR, PMW)

21



October 29, 2014

Deal with imbalance between number of satellite surface observations and in-situ profiles is a challenge for 

ocean DA system. 

• Without Argo data to anchor the subsurface ocean state, assimilation of SST data introduce strong cooling 

in the Labrador Sea, which then leads to excessive deep water formation that feed into over-estimation of 

the AMOC in 1990s.  

• To tackle this: obs pre-processing;  EDA vertical diffusion tensor; model bias correction

ECMWF AS2023, READING

MLD depth (m) at NW Atlantic Ocean

SST DA

SST nudging

ORAP6

SST DA

SST 
nudging

ORAP6

Florida strait transports (Sv)

Cable obs

Imbalance between satellite and in-situ observations
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October 29, 2014ECMWF AS2023, READING

3DVar-FGAT as in Daget et al 2009NEMOVAR (CERFACS/ECMWF/INRIA/Met Office)

• En Variational DA system for NEMO ocean model.

• Solves a linearized version of the full non-linear 
cost function.

• Incremental 3D-Var FGAT running operational, 4D-
Var in research model

• Background correlation model based diffusion 
operators

• Background errors are correlated between different 
variables through balance operator

Ocean DA at ECMWF: 3DVar-FGAT

Weaver et al 2003,2005;       Daget et al 2009;          Mogensen et al 2012; 

Balmaseda et al 2013;          Chrust et al., 2021
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Generate an ensemble of analyses from an ensemble of background states and 

perturbed observations

➢ Ensemble DA perturbations simulate errors for the deterministic system;

➢ 3D-Var analysis for both deterministic and ensemble system;

➢ Observation and surface forcing perturbations as in ORAS5 (Zuo et al. 2017);

➢ Implementation of stochastic physics in NEMO (A. Storto, CMRE).

Ocean DA at ECMWF: En3DVar 
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Ocean temperature spread at the surface from an Ensemble of Ocean Data Assimilations. The highest 

background errors are in western boundary current and Antarctic Circumpolar Current regions. This 

shows more details than without errors of the day, including a more detailed structure of sub-mesoscale 

eddies with much sharper fronts, and a hint of tropical instability waves in the tropical Pacific Ocean 

EDA temperature spreads 

Chrust et al., 2021

Ocean DA at ECMWF: En3DVar with Hybrid-B 

Only climatological ensemble + error of the day 



October 29, 2014

• Assimilation of SST with parameterized vertical correlation tensor increased SST biases

• Flow dependent vertical correlation scales (EDA) is essential, thanks to the factorized 
formulation of normalization factors;

• SST DA performance

is much worser than

SST nudging with

parameterized

diffusion tensor (as in

OCEAN5)

Changes in fit-to-obs RMSE: SST DA – SST nudging

(verified against all in-situ obs: Argo/XBT/CTD/moored/animal/etc)

• Switching to hybrid

tensor with ensemble

vertical tensor improve

WBCs and ACC

ECMWF AS2023, READING

Ocean DA at ECMWF: En3DVar with Hybrid-B 
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Perturbed 

Observations NEMOv4 + SI3

Innovations + 

updated B

Increments

IAU

En3DVar

Ocean + sea-ice state 

variables

ORAS6 is the new ECMWF ensemble 

ocean and sea-ice reanalyses. ORAS6 

will replace ORAS5 to provide ocean 

and sea-ice initial conditions for all 

ECMWF coupled forecasts in 2024 
(including ERA6).

• NEMOv4 + SI3 (¼ deg +75 level)

• Assimilates ocean in-situ and surface 

observations

• Use En3DVar FGAT scheme, 11 

members

• Covariance B is updated every cycle 

with ensemble backgrounds, generated 

by perturbed forcings and observations

Observations:

• In-situ T/S prof.

• SIC 

• SLA

• SST

Perturbed Forcings (hourly)

Ensemble ocean and sea-

ice analyses

Overview of the ECMWF ORAS6 system

Ensemble backgrounds

• Wind stresses

• Net precip.

• Solar radiations

Ocean and sea-ice reanalysis at ECMWF: ORAS6



Forcing Model Data Assimilation Ens. Gen. Observations

Atmos. FWB Ocean Sea-ice B cov. Bias Corr. SST Sea-ice
Ens

num
Pert. SL Insitu SIC SST

ORAS5/

OCEAN5

ERA40/E
RA-int 
(6/24hr)

GRACE+
MSLA

NEMOv3.4
¼ deg., 75 
levels

LIM2 
(single-cat)

3DVar FGAT
a-prior + 
online

Nudging 
Weekly-
coupled

5
V3: Obs + 
forcing

DT2018 EN3 OSTIA L4
HadISST2+OS
TIA L4

ORAS6
ERA5 
hourly

New 
FWB 
distr.

NEMO4
¼ deg., 75 
levels

SI3 (multi-
cat.)

En3DVar +
Hybrid-B

2-step 
offline + 
online

En3DVar
Single 
minimization 

11
V4: Obs + 
forcing 

DT2021 EN422
OSI-SAF 
L3 (v3)

OSTIAv2 L4

ORAS6: Timeline

2020 2023

ORAS6 Pre-0/1/2/3/4 ORAS6 

Production

20242022

ORAP6

2021



• ORAS6 uses EDA with hybrid-B formulation, which is essential for SST DA.

• Among all tested hybrid-B configurations, using hybrid horizontal diffusion tensor (parameterized tensor in 

tropics + climatological tensor in extra-tropics) together with an ensemble-based vertical diffusion tensor 

that updates every cycle has the best performance

Evaluation of ORAS6: sub-surface states

Climatological tensor V2: Hybrid H-ten + MLD V-ten V3: Hybrid H-ten + ens V-ten 

Temperature fit-to-obs RMSE changes w.r.t ORAS5 

AWS2022, ECMWF



OSTIAv2 SST data is directly assimilated in the ORAS6 system

• This has greatly reduced SST biases in the GS region but only if ensemble based vertical diffusion tensor is used.

•  Improvement also attributed to ERA5 forcing and improved upper ocean mixing in the physical model.

ORAS6 (SST DA) 

ORAS5 (SST nudging) 

SST biases in the Gulf Stream regions (Jan 1991)

ECMWF AS2023, READING

OSTIA SST

AWS2023, ECMWF

Evaluation of ORAS6: SST
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SST diurnal range (in K, 5-day mean)

SST nudging

SST DA

ECMWF AS2023, READING

• Compared to SST nudging, direct assimilation of SST with En3DVar

improves the diurnal cycle (by ~15%) in the ORAS6 SST analysis

• Realistic TIW representation in the ORAS6 prototype with hourly ERA5 

forcing and assimilation of SST data

Evaluation of ORAS6: diurnal cycle

Daily SST in ORAS6 prototype
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Evaluation of ORAS6: sea-ice 

Sea-Ice Concentration data from OSI SAF L3 (CDR/ICDR) is assimilated through En3DVar scheme in the 

ORAS6 system

• Treated as univariate but with single minimization

• Uncertainties in SIC obs is accounted by perturbing SIC values with AE and SE (Zuo et al., 2017)

SIC RMSE: ORAS6 – ORAS5 
(2015-2020, against OSTIA2 )

April sea-ice extend 
(area with SIC >15%)

NSIDC

ORAS5

ORAP6

• The Arctic sea-ice 

extend (SIE) in 

ORAS6 is better 

consistent with NSIDC 

records

• No more spurious 

Antarctic SIE extreme 

event in 1986 in 

ORAS6

NSIDC

ORAS5

ORAS6
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Evaluation of ORAS6: sea-ice 

• Assimilation of SIC data leads to 

improved sea-ice state 

performance in both sea-ice 

concentration and sea-ice 

thickness.

• ORAS6 will provide daily sea-ice 

reanalysis (sea-ice concentration 

and thickness, snow depth, sea-

ice drift …) that covers 1955-NRT

Daily sea-ice concentration from ORAS6 prototype
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Evaluation of ORAS6: impact on NWP 

Positive impacts are visible when initializing ocean and sea-ice 

components of our coupled forecasting system from ORAS6 

prototype with SST DA

ECMWF AS2023, READING

Prep-2 – OCEAN5

Prep-1 – OCEAN5

Medium-range forecasts 
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• Gain about 2 months in ENSO prediction

• Without Ocean observation and DA, we would lose about 15 years of progress.

1997        2002       2006      2011        2017

ORAS5/OCEAN5 provides ocean and sea-

ice initial conditions for all ECMWF coupled 

forecasting system: (ENS, HRES, 

Seasonal). OCEAN5 also provides SST 

and SIC conditions for the ECMWF 
atmospheric analysis system (Browne et 

al., 2018) 

ORAs in coupled forecasts 



• Compared to objective analysis product, ORAs use numerical models to provide physically consistent 

background states for ingesting observations. 

• ORAs provide continuous coverage of the global oceans and therefore can resolve higher frequency 

variability in ocean than methods that rely primarily on in situ data.

• ORAs benefit from continuous improvements in earth system model, thanks to increased model resolution 

and better representation of physical processes. 

ECMWF AS2023, READING

Loeb et al., 2022

ORAs in Climate monitoring

Ocean energy changes: ORAS5 vs Argo

Recent ORAs are reliable data sources in study of ocean contributions in EEI (Mayer et al., 2021, 2022, Loeb 

et al., 2022). 
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Challenges in ORAs to support different applications

Ocean ORAs and Real-time analysis 

• One system approach (Ocean Reanalysis + analysis) to initializing all coupled forecasts (from short-

range to seasonal forecasts) is very challenging. 

• Ocean data assimilation system that is optimized based on the latest NWP configuration and recent 

global ocean observing system, may not be sound for climate reanalysis purpose. “A central goal of 

climate data assimilation is to … optimizing the use and interpretation of limited climate observations”, 

from WCRP Climate workshop 2023.  

How do we go forward? 

• Flow-dependent background correlation model (EDA) 

• Use staged but linked streams: Delay/anchor streams with 

”frozen” system to ensure consistency and calibration of 

hindcasts/extended-range forecasts; NRT stream to allow 

system updates on model, data assimilation and new 

emerging observations. 

OCEAN5 BRT and RT components

Zuo et al., 2019



Challenges in ORAs for Climate monitoring

• High uncertainties in re-construction of historical ocean events (heat content, transports) with various ORA 

products, especially when considering the deeper ocean below 1000m (Lee et al., 2010; Palmer et al., 

2017, Storto et al., 2020). 

• How to deal with changing observing system is one of the main challenge in ORAs. 

Constrain ocean with sparse observing network

How do we go forward? 

• Use recent observation information retrospectively ?

• Smoothing 

• nudging 

• Bias correction

No bias correction

with bias correction

Salt content (0-700m) in the Southern Ocean

+ obsNo obs



Summary

• ECMWF has a long history in developing ocean (and sea-ice) reanalysis product, initially to support 
seasonal forecasting system. ORAs is now used to provide initial conditions for all ECMWF coupled 
forecasting system and plays an important role in C3S climate monitoring service. 

• Quality of an ocean reanalysis mostly depends on: i) quality of the numerical model; ii) efficiency and 
effectiveness of the data assimilation method; iii) availability and quality of observations; and iv) 
boundary conditions. 

• ECMWF is developing the 6th generation of ocean and sea-ice ensemble reanalysis-analysis system – 
ORAS6. Major system updates include a new Ensemble based variational DA system with a hybrid-B 
approach; new NEMOv4 + SI3 model; ERA5 hourly forcing; direct assimilation of SST; among others. 

• ORAS6 development is in its final consolidation phase. ORAS6/OCEAN6 will provide initial conditions 
for future ECMWF coupled forecasts (including ERA6) with a cycle update scheduled in 2024. 

• This is very challenging to meet different requirements from various ORAs applications (subseasonal-

to-decadal prediction, climate monitoring). 

ECMWF AS2023, READING 44


	Slide 1
	Slide 2: Outline
	Slide 3: Ocean and sea-ice reanalysis at ECMWF
	Slide 4: Ocean and sea-ice reanalysis at ECMWF
	Slide 5: Outline
	Slide 6: Applications of ORAs 
	Slide 7: Applications: sub-seasonal to decadal forecasts
	Slide 8
	Slide 9: Applications: observing system co-design and impact studies 
	Slide 10
	Slide 11: Outline
	Slide 12: ECMWF ORAs systems
	Slide 13: Numerical model in ORAs: ocean model
	Slide 14: Numerical model in ORAs: ocean model
	Slide 15: Numerical model in ORAs: sea-ice model
	Slide 16: Numerical model in ORAs: sea-ice model
	Slide 17: Atmospheric boundary conditions
	Slide 20: Ocean in-situ observations
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Ocean DA at ECMWF: En3DVar 
	Slide 26
	Slide 27
	Slide 28: Outline
	Slide 30: Ocean and sea-ice reanalysis at ECMWF: ORAS6
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Evaluation of ORAS6: impact on NWP 
	Slide 39: Outline
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44: Summary

