

-1

CM SAF

CLAAS-4 CDR

www.cmsaf.eu

- Climate dataset of cloud properties
- Covers SEVIRI disk of Meteosat Prime (0°)
- New edition, planned release 2026
- Temporal coverage:
 2004 2025
- Total size of dataset ~ 150 TB

DOI:10.5676/EUM_SAF_CM/CLAAS/V003 Cloud Fractional Coverage (CFC)

CLAAS-4 Production

- Software components
 - provided by CM SAF partners
- Dependencies inherited from previous CLAAS editions
- Partially under active development
- Input to be processed for 20+ years:
 - 96 SEVIRI images per day
 - hourly ERA-5 input
 - daily ice map
 - auxiliary data

Workflow management 1

CM SAF

- Wishlist for scientific workflow management software
 - monitoring
 - profiling
 - run bash scripts
 - HTCondor integration
 - works with container in HTCondor
 - active project
- Collection of workflow engines from
 - https://workflows.community/systems
 - https://s.apache.org/existingworkflow-systems

Finish

No "one fits all" solution found

Daily workflow

- parsl
 - provides workflow management, parallel execution, monitoring, profiling

Days for full time period

- HTCondor
 - provides integration to batch system, monitoring, workflow management

Workflow Implementation

- Implement processing steps as python functions and bash scripts
- Handle dependencies in parsl
- parsl HighThroughputExecutor provides monitoring and profiling capabilities

seaice_files_n.extend(list(seaice_download.rglob(seaice_nh_file)))

seaice files s = list(seaice dir.rglob(seaice sh file))

Data input / output / storage

- Dynamic input
 - EUMETSAT data store
 - MARS
 - OSI SAF ftp Server
- SFS
 - shared storage between VMs
 - storage for sharing files and test data

- S3
 - cache for semi-static, preprocessed and final data
 - manage access through different keys
 - enable access to test user without EWC access

EWC Tools 2

www.cmsaf.eu

Data processing

- VMs
 - selection of VM size according to requirement
 - deployment of larger / more VMs for processing tasks
- HTCondor batch
 - flexible resource usage
 - burst capacity (planned)

Container

- portable processing environment
- integration of static data
- container size of multiple GB so far no problem
- container registry

- Test data production
 - usage of multiple VMs with shared SFS storage
 - production of test data covering multiple months
 - automatic download and upload of data
 - successful porting of code to container and batch farm

- Lessons learned
 - data input is critical
 - easy deployment of VMs for different purposes / services can be very helpful
 - docker for HTCondor needs some special settings

CDR Processing

Integrate all software components

- Scale processing up
 - check for bottlenecks

Development

- Better data exchange with other SAFs
- Evaluate possibilities to process interim products
 - data processed in a daily manner
 - kubernetes?
- Evaluate additional scientific workflow manager (data-centric)

Thank you for your attention!

CM SAF Satellite-based Climate Data Records Satellite Satellite measured measured Signal Signal Homogenization **EDR FCDR** Environmental Data Record **FCDR** Same Algorithm for TCDR & ICDR Latest Algorithm **Fundamental** to retrieve geophysical property Climate Data Record **ICDR EDR** ICDR **TCDR** Climate Data Record **TCDR Near-Real Time Production** Regular Re-processing Climate Data Record

Workflow DAG

Workflow DAG

Memory Usage

Memory Distribution(avg)

200 150 100 50 0 0 2B 4B 6B 8B

Memory usage (bytes)

Memory Distribution(max)

CPU Usage

Docker + HTCondor

- container in HTCondor run with unprivileged user nobody in HTCondor specific workdir
 - all required files and folders need to be world readable and world executable (folders)
 - workdir / tmp in dockerfile helps testing outside HTCondor
 - use _entrypoint.sh as ENTRYPOINT
 - copy all required files to HTCondor workdir cp /a/x /b/y /c/z .
 - use HTCondor workdir to have access to condor I/O

