—XCALI8UR
[l

ExCaliwork: Optimizing Data
Movement with Active Storage

Konstantinos Chasapis, kchasapis@ddncom

Jean-Thomas Acquaviva, jtacquaviva@ddn.Com ' '

Excaliwork - Excalibur subproject: Data Reduction

Two techniques to reduce data xCALISUR

movement: (1) Active (Computational) Storage
and (2)Ensemble Data Analysis

Bryan Lawrence!?, Grenville Lister?, Jeff Cole?, David Hassell?, Valeriu Predoi?, Stig Telfer’, Matt Pryor3,
Konstantinos Chasapis®, Jean-Thomas Acquaviva*, Scott Davidson?, Mark Goddard?

!National Centre for Atmospheric Science, 2Department of Meteorology and Department of Computer Science, *University of Reading,
3StackHPC, ‘DDN

Big Picture

AIM: Deliver a completely new paradigm for where (some) computations are performed by reducing the amount of data
movement needed - and in the context of simulations, particularly for ensemble outputs.

CONTEXT: Excalibur Cross-Cutting Project, ExcaliWork, aiming to address a range of use-cases.
COMPONENTS: Active-Storage (Python/S3/POSIX), In-Flight Ensemble Analysis

Pl: Pr. Bryan Lawrence from University of Reading / NCAS

Data Movement and Performance Optimization

|O community has a long tradition of doing ‘tricks’ on the
behalf of end-users for performance purpose

e.g. Caching, Look-ahead

Data sieving:

Hard Drive IOPS are expensive

e Limit the number of head movements on HDD
e Bring a large chunk of data across the fabrics
e Throw away most of the chunk and keep only interesting pieces

Trading data movement for IOPS
... less IOPS better performance

... more data movement more power

Flash Technology Challenges Old Optimizations

e Flash IOPS budget >> HDD by 3 orders of magnitude
o To 10 ysec from 10 msec

e |OPS no longer such an important topic

e Flash Bandwidth >> HDD by 2 orders of magnitudes
o To 10 GB/s from 0.2 GB/s

e Bandwidth no longer such an important topic

Where should we put the optimization effort?

New Technology Challenges Old Optimizations

e Infrastructures size is caped by Power
o Power Requirement and Power Cost

e Power very much an important topic
Data Movement is Expensive Electrifying power prices in Germany
- - Baseload electricity 1 year ahead (€ per megawatt)
Hierarchical energy costs.

350
& pJ i Cost to move data 1 mm on-chip 300
250

Typical cost of a single floating point operation
200
Cost to move data 20 mm on chip 150

Cost to move off-chip,
but stay within the package (SMP) 100
Cost to move data off chip 50
2000 pJ into DRAM

~2500 pJ Cost to move data off chip 2019 2020 2021 2022
to a neighboring node

Source: Bloomberg
Source: http://slideplayer.com/slide/7541288/ -all 5 O FT

Interartinnc

Arithmetic Intensity: Data Requirement and FLOPS

0.1-1.0 flops per byte Typically < 2 flops per byte 0O(10) flops per byte
A A A

A\ [& Ny A

nsit

SpMV
BLAS1,2 Particle
2 Method
Stencils (PDEs) FFTs, — ethods
Lattice Boltzmann Spectral Methods Linear Algebra
" Methods =~ o (BLAS3)
Y Y 5 '@
O(1) O(log(N)) O(N)
What can we do Offload to

here? Accelerator

Offloading Kernels to Storage Servers

Comprehensive Offloading Options
® High Arithmetic intensity: Good Candidate for Accelerator offloading
e Low Arithmetic intensity: Good Candidate to Storage offloading
o Minimize the volume of data transiting through the network
O Increase performance, decrease power
® Credential promotion from end user to Root

® No loop ->guarantee of Termination

® Limited set of operations: MPI Reduction, Min, Max, Add,

O

Active Storage: Application Support APl is Required

Support provided by University of Reading
® |[nstantiated as a Python library
® Bridging semantic gap:
o Storage knows 0O and 1
o Application knows data type
e Check if Active Storage is available

o if Not: Read a data range, apply operation and compute result

o if Yes: make a specific call the Storage Client

O

e Data Range, Operands and Result Type, Operation to apply

Active Storage: Experimental Set-up

® Source tree of one of DDN’s Parallel File System software
e Implement API support within the file system storage client
© Running in User Space on the Compute Node
o Intercept Application Calls
® Implement Storage Client to Storage Server RPC protocol
o Leverage Existing RPC Calls
e Implement Active Storage function within Storage Server Code

e Demonstrate with U. Reading benchmarks

Active Storage: Concept

Offset A,B Type Double Operation SUM

Active Storage: 2-Phases Implementation

Initial implementation through an Active Client
® FUSE prototype of the Client File System

e APl with Application

Compute node

Storage
client
: ()
@ tarequesiis o i 090 _ilNNe . muman .
% kernel operatign g a): % &
. : 9 o - L
Application < & o< g File Extents D »
> 5 s tisuSE 2
£ g 12 15—
< B ol %
it RHERT S
> faw f Client Read Buffer *, From Storage ser
© '3 1
= .=
2 O & File Ext%DD
] H - >
O :
...... Client Write Buffer ., To Storage serve

_

Active Storage: Full-fledged Software Stack

Compute

node —

Storage

\

’_

APPLICATION

L}

10 Library

— ioctl()

b

File System Client

L

Network

|

File System Server

b

Storage Devices

— | Fetch data

request
——

Send ac req()

L__ Receive ac req()

A
[
4

Receive ac req()

reply ac req()

compute()

v T

Application issues an ioctl to the file system
client

File system client sends an active storage
request to the primary storage server

The storage server receives the active
storage request

Issues a fetch data call and loads data in
memory

Storage server applies the computation
indicated by the active storage call

Storage server replies to the file system
client with the result of the compute
function

File system client receives the reply from the
storage server and exposes the result of the
compute function to the application

Functional Validation on Virtual Clusters

® Conducted Tests demonstrate feasibility

o Fully implemented in a production grade parallel file system
e Fully operation on small benchmarks
e Demonstrate on Virtual Cluster

o No meaningful Performance Measurement

o Lack of HW testbed

Striping: the Art of Data Layout in Parallel File Systems

Compute node

-

1t3 elt4

library

eltl elt2

Stripe 2

Stripe 1

Storage server 1 Storage Server 2

o ® Files can be distributed over multiple Storage Servers

Active Storage: Data Layout HDF5 & ZARR

& & Lo &
76 || 77 || 78 88/J 89/J 90 |
75 1
28 || 29 (|30 | 42— 40 || 41 || 42 i
25|26 || 27 | } 37 (|38]|| 39
54 il 510)
& 4 . £
1
4 5 6 16 || 17 || 18
1 2 3 13|14 || 15

HDF5

The HDFS5 library allows the application to request alignment of all objects
in a file over a particular size threshold, with the H5Pset_alignment
API call. This allows aligning the chunks for chunked datasets to a
favored block boundary for the file system.

ZARR

class zarr.storage.DirectoryStore (path,
normalize keys=False,

dimension_ separator=None) [source]

Storage class using directories and files on a standard file system.

e import zarr
e store = zarr.DirectoryStore('data/array.zarr')
[]

z = zarr.zeros((10, 10), chunks=(5, 5), store=store, overwrite=True)
z[..]=42
Each chunk of the array is stored as a separate file on the file system

https://zarr.readthedocs.io/en/stable/api/storage.html

https://zarr.readthedocs.io/en/stable/_modules/zarr/storage.html#DirectoryStore

Active Storage: data layout on distributed servers

Storage server 1
p [0]

o1 A, —, -,
43 A\ S S S 4
19 20 21 22 23 24
13 14 15 16 17 18
g 8 9 10 11 12
7 o —
‘ 1 2 3 4 5 6

00O

O

process at the right granularity

: ‘ Storage server 4 \

Having each chunk handled as an individual object / files allows each server to

Take-Away

Data Reduction is a major opportunity for performance/power optimization

We have demonstrated the feasibility of Active Storage in a Production Grade
parallel File System.

Some future works can be foreseen

Evaluation with larger application
Testbed: Quantified the Power / network traffic relation
Increase the scope of supported operations

[
[
[
e Lateral cooperation between storage servers (split chunks)

—XCALI8UR
[l

Thanks!

\

don

Questions?

Active Storage: data layout HDF5 & ZARR

e File layout is manageable in Lustre (single stripe)
o Check the status for RED

e Pursue RED client implementation

e Investigate ZARR file per chunk compression in Fuse

° Kang, D., Rubel, O., Byna, S., & Blanas, S. (2020, May). Predicting and comparing the performance of array

management libraries. In 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)
(pp- 906-915). IEEE.
e Howison, M. (2010). Tuning hdf5 for lustre file systems.

O

Offload numerical kernels to limit data movement

Scientific workloads contain code segments with limited arithmetic intensity:
e Parse alarge amount of data to apply a simple kernel

e Client will fetch data from servers and apply the computational kernel on the read data

Toward Server implementation

—
R

® Read patternin RED is N:M RED server

- @@

® NO Iayout guarantee

RED e ——

RED server
_/

client

—
R

RED server
_/

