
ExCaliwork: Optimizing Data
Movement with Active Storage

Konstantinos Chasapis, kchasapis@ddncom
Jean-Thomas Acquaviva, jtacquaviva@ddn.Com

Excaliwork - Excalibur subproject: Data Reduction

PI: Pr. Bryan Lawrence from University of Reading / NCAS

Data Movement and Performance Optimization

IO community has a long tradition of doing ‘tricks’ on the
behalf of end-users for performance purpose

e.g. Caching, Look-ahead

Data sieving:

Hard Drive IOPS are expensive
● Limit the number of head movements on HDD
● Bring a large chunk of data across the fabrics
● Throw away most of the chunk and keep only interesting pieces

Trading data movement for IOPS

… less IOPS better performance

… more data movement more power

● Flash IOPS budget >> HDD by 3 orders of magnitude
○ To 10 µsec from 10 msec

● IOPS no longer such an important topic
● Flash Bandwidth >> HDD by 2 orders of magnitudes

○ To 10 GB/s from 0.2 GB/S
● Bandwidth no longer such an important topic

Where should we put the optimization effort?

Flash Technology Challenges Old Optimizations

● Infrastructures size is caped by Power
○ Power Requirement and Power Cost

● Power very much an important topic

New Technology Challenges Old Optimizations

Arithmetic Intensity: Data Requirement and FLOPS

Offload to
Accelerator

What can we do
here?

Offloading Kernels to Storage Servers

Comprehensive Offloading Options

● High Arithmetic intensity: Good Candidate for Accelerator offloading

● Low Arithmetic intensity: Good Candidate to Storage offloading

○ Minimize the volume of data transiting through the network

○ Increase performance, decrease power

● Credential promotion from end user to Root

● No loop -> guarantee of Termination

● Limited set of operations: MPI Reduction, Min, Max, Add,

Active Storage: Application Support API is Required

Support provided by University of Reading

● Instantiated as a Python library

● Bridging semantic gap:

○ Storage knows 0 and 1

○ Application knows data type

● Check if Active Storage is available

○ if Not: Read a data range, apply operation and compute result

○ if Yes: make a specific call the Storage Client

● Data Range, Operands and Result Type, Operation to apply

Active Storage: Experimental Set-up

● Source tree of one of DDN’s Parallel File System software

● Implement API support within the file system storage client

○ Running in User Space on the Compute Node

○ Intercept Application Calls

● Implement Storage Client to Storage Server RPC protocol

○ Leverage Existing RPC Calls

● Implement Active Storage function within Storage Server Code

● Demonstrate with U. Reading benchmarks

Active Storage: Concept

Active Storage: 2-Phases Implementation
Initial implementation through an Active Client

● FUSE prototype of the Client File System

● API with Application

Active Storage: Full-fledged Software Stack
● Application issues an ioctl to the file system

client

● File system client sends an active storage

request to the primary storage server

● The storage server receives the active

storage request

● Issues a fetch data call and loads data in

memory

● Storage server applies the computation

indicated by the active storage call

● Storage server replies to the file system

client with the result of the compute

function

● File system client receives the reply from the

storage server and exposes the result of the

compute function to the application

Functional Validation on Virtual Clusters

● Conducted Tests demonstrate feasibility

○ Fully implemented in a production grade parallel file system

● Fully operation on small benchmarks

● Demonstrate on Virtual Cluster

○ No meaningful Performance Measurement

○ Lack of HW testbed

Striping: the Art of Data Layout in Parallel File Systems

● Files can be distributed over multiple Storage Servers

Active Storage: Data Layout HDF5 & ZARR
HDF5
The HDF5 library allows the application to request alignment of all objects
in a file over a particular size threshold, with the H5Pset_alignment
API call. This allows aligning the chunks for chunked datasets to a
favored block boundary for the file system.

ZARR
class zarr.storage.DirectoryStore(path,
normalize_keys=False,
dimension_separator=None)[source]

Storage class using directories and files on a standard file system.

● import zarr
● store = zarr.DirectoryStore('data/array.zarr')
● z = zarr.zeros((10, 10), chunks=(5, 5), store=store, overwrite=True)
● z[...] = 42

Each chunk of the array is stored as a separate file on the file system
https://zarr.readthedocs.io/en/stable/api/storage.html

https://zarr.readthedocs.io/en/stable/_modules/zarr/storage.html#DirectoryStore

Active Storage: data layout on distributed servers

Storage server 1

Storage server 4

Having each chunk handled as an individual object / files allows each server to

process at the right granularity

Take-Away

Data Reduction is a major opportunity for performance/power optimization

We have demonstrated the feasibility of Active Storage in a Production Grade
parallel File System.

Some future works can be foreseen

● Evaluation with larger application
● Testbed: Quantified the Power / network traffic relation
● Increase the scope of supported operations
● Lateral cooperation between storage servers (split chunks)

Thanks!
Questions?

Active Storage: data layout HDF5 & ZARR

● File layout is manageable in Lustre (single stripe)
○ Check the status for RED

● Pursue RED client implementation
● Investigate ZARR file per chunk compression in Fuse

● Kang, D., Rübel, O., Byna, S., & Blanas, S. (2020, May). Predicting and comparing the performance of array
management libraries. In 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)
(pp. 906-915). IEEE.

● Howison, M. (2010). Tuning hdf5 for lustre file systems.

Offload numerical kernels to limit data movement

Scientific workloads contain code segments with limited arithmetic intensity:

● Parse a large amount of data to apply a simple kernel

● Client will fetch data from servers and apply the computational kernel on the read data

Toward Server implementation

● Read pattern in RED is N:M

● no layout guarantee
RED
client

RED server

RED server

RED server

