
Pace
A GPU-Enabled Implementation of FV3GFS 

using GT4Py
Oliver Elbert, Johann Dahm, Eddie Davis, Florian Deconinck, Rhea George, Jeremy McGibbon, Tobias 

Wicky, Elynn Wu, Christopher Kung, Tal Ben-Nun, Lucas Harris, Linus Groner, and Oliver Fuhrer



The Pace Model

FV3 dynamical core, GFDL Cloud Microphysics v2 
in Cartesian GT4Py

Contains infrastructure needed to run simulations

V3 of microphysics nearly finished, other GFS 
physics ported not optimized or integrated yet

https://github.com/NOAA-GFDL/pace

Dahm et al. 
https://gmd.copernicus.org/articles/16/2719/2023/

https://github.com/NOAA-GFDL/pace
https://gmd.copernicus.org/articles/16/2719/2023/


Comparing to Fortran

Moist baroclinic instability integrated 
for 9 days

Results match fairly well given 
arithmetic changes

Plotted: 850 mbar temperature



Pace Performance

~3.6x speedup over Fortran on P100 GPUs, extra factor of ~2.4 on A100s

CPU optimization coming soon

Ben-Nun et al: https://arxiv.org/pdf/2205.04148.pdf

https://arxiv.org/pdf/2205.04148.pdf


So…

What have we learned?



Lessons Learned So Far

1. Can replicate Fortran model in a DSL



Lessons Learned So Far

1. Can replicate Fortran model in a DSL

2. GPU performance boost



DSL approach

Leverage frontend/backend distinction!

Model development can be easy with 
readable, clean frontend Python

Portable code extremely helpful during GPU 
transition

Performance engineering details more 
separated from modeling

User code

DSL Frontend (GT4Py)

DSL Compiler
Checkers

Optimizers
Code Generators

Python

CPU 
Compiler

GPU 
Compiler



Lessons Learned So Far

1. Can replicate Fortran model in a DSL

2. GPU performance boost

3. DSL paradigm is good



FV3 Specifics

Extremely efficient Fortran dycore

Used extensively in NOAA and partner 
models (SHiELD, AM4, GEOS, GFS, 
HAFS…)

Finite volume dynamics on 
cubed-sphere C-D grid discretization

Special computations to account for tile 
edge/corner geometry

Lagrangian vertical coordinate regularly 
remapped to Eulerian coordinates



Object Orientation

Most stencils live inside classes

● Preserves temporary storages
● Split init/compile time from runtime
● Simple organization

__init__ creates an object of the class, 
handles stencil compilation, etc.

__call__ means objects are called like 
functions



Lessons Learned So Far

1. Can replicate Fortran model in a DSL

2. GPU performance boost

3. DSL paradigm is good

4. Still need communication between frontend modeling and backend 

engineering



Driving Adoption

Excitement about using Jupyter 
notebooks for model development

New tests and powerful Python 
debugging

More attractive as features increase 
and team grows…



Driving Adoption

Minimum Useful Model

Add capabilities modelers want, 
meanwhile modelers keep developing 
Fortran

What capabilities allow for quickest use 
in research/forecasting/teaching?

● RCE on doubly-periodic domain
● Dycore wrapper for Fortran model 

runs
https://en.m.wikipedia.org/wiki/File:Zeno_Achilles_Paradox.png



Lessons Learned So Far

1. Can replicate Fortran model in a DSL

2. GPU performance boost

3. DSL paradigm is good

4. Still need communication between frontend modeling and backend 

engineering

5. Performance isn’t enough
○ Need to identify critical features for adoption



Next Steps

More physics

JAX backend for ML and DA applications

Research applications (RCE, LES, TC)

Incorporate into broader GFDL infrastructure

Growing collaboration and community

Image credit: Kun Gao



Thank you!

Former AI2 DSL team CollaboratorsFV3 Team, Modeling Systems Division


