Pace
A GPU-Enabled Implementation of FV3GFS
using GT4Py

Oliver Elbert, Johann Dahm, Eddie Davis, Florian Deconinck, Rhea George, Jeremy McGibbon, Tobias
Wicky, Elynn Wu, Christopher Kung, Tal Ben-Nun, Lucas Harris, Linus Groner, and Oliver Fuhrer

The Pace Model

FV3 dynamical core, GFDL Cloud Microphysics v2
in Cartesian GT4Py pace

Contains infrastructure needed to run simulations

V3 of microphysics nearly finished, other GFS
physics ported not optimized or integrated yet

)’»AlZ»@

VULCAN

https://github.com/NOAA-GFDL/pace

Dahm et al.
https://gmd.copernicus.org/articles/16/2719/2023/

https://github.com/NOAA-GFDL/pace
https://gmd.copernicus.org/articles/16/2719/2023/

Comparing to Fortran

for 9 days

Results match fairly well given
arithmetic changes

Plotted: 850 mbar temperature

(a)

60°N

220

Python

120°E 180° 120°W

230 240 250 260

(b) Fortran

270 280 290

Temperature [K]

DAL

e e dein] 30°S
/w's

— = -~
180° 60'W 0 &0°E 180°

Temperature difference le-11

Day 6
wh‘
30°N

o

30°S
co's

~. 2
180* 60'W 0" &0°E 180*

-3 -2 -1 o 1 2
Temperature difference le-5

180" 60"W 0" 60'E 180

Temperature difference le-11
Day 9

/
soo e

180° 60'W 0° 60'E 180°

-0.6 ~-0.4 -0.2 0.0 02 04 0.6
Temperature difference

Pace Performance

~3.6x speedup over Fortran on P100 GPUs, extra factor of ~2.4 on A100s

18 — =
16 _________ o e 3¢ e - ——— - —
14
)
Q_ 12
@
& 10
g 8
g 48km 12km 9km 6km 4km
E 6
- ® ° ° ° °
4 back end
2 —8— Pace GPU
-#u~ Fortran
0
6 96 150 384 864

Number of Nodes

Ben-Nun et al: https://arxiv.orq/pdf/2205.04148.pdf

CPU optimization coming soon

https://arxiv.org/pdf/2205.04148.pdf

What have we learned?

Lessons Learned So Far

1. Can replicate Fortran model in a DSL

Lessons Learned So Far

1. Can replicate Fortran model in a DSL

2. GPU performance boost

DSL approach

Leverage frontend/backend distinction!

Model development can be easy with
readable, clean frontend Python

Portable code extremely helpful during GPU

transition

Performance engineering details more

separated from modeling

' GridTools

User code

!
DSL Frontend (GT4Py)

! !

DSL Compiler Python
Checkers
Optimizers
Code Generators

: !

CPU GPU
Compiler Compiler

Lessons Learned So Far

1. Can replicate Fortran model in a DSL
2. GPU performance boost
3. DSL paradigm is good

@gtscript.function

FV3 Specifics def all_corners_ke(ke, u, v, ut, vt, dt):
import i_end, i_start, j_end, j_start

from __externals _

with horizontal(region[i_start, j_start]):

ke = corner_ke(u, v, ut, vt, dt, 0, o0, -1, 1)
.. with horizontal(region[i_end + 1, j_start]):
Extremely efficient Fortran dycore ke = corner_ke(u, v, ut, vt, dt, -1, @, 0, -1)
with horizontal(region[i_end + 1, j_end + 1]):

ke = corner_ke(u, v, ut, vt, dt, -1, -1, 0, 1)
with horizontal(region[i_start, j_end + 1]):

ke = corner_ke(u, v, ut, vt, dt, o, -1, -1, -1)

Used extensively in NOAA and partner
models (SHIELD, AM4, GEOS, GFS,
HAFS...)

return ke

Finite volume dynamics on

cubed-sphere C-D grid discretization
. . . qsum = (pell[@, 0, lev + 1] - pe2) * (
Special computations to account for tile q4_200, 0, lev]

+ 0.5
edgelcorner geometry (qg4_4(0, 0, lev]l + q4_3[0, 0, lev] - g4_2(0, 0, levl)

(1.0 + pl)
q4_410, 0, lev] * 1.0 / 3.0 * (1.0 + pl % (1.0 + pl))

I % %

Lagrangian vertical coordinate regularly
remapped to Eulerian coordinates

)

lev = lev + 1

while pello, 0, lev + 1] < pe2[0, 0, 1]:
qsum += dp1[@, 0, lev] x q4_1[0, 0, lev]
lev = lev + 1

dp = pe2[0, 0, 1] - pel[@, 0, lev]

esl = dp / dpll[e, 0, levl

Object Orientation

Most stencils live inside classes

e Preserves temporary storages
e Split init/compile time from runtime
e Simple organization

__init creates an object of the class,
handles stencil compilation, etc.

__call means objects are called like
functions

class XPiecewiseParabolic:

Fortran name is xppm

dinit (

self,

stencil_factory: StencilFactory,
dxa,

grid_type: int,

iord,

origin: Index3D,
domain: Index3D,

assert grid_type < 3
self._dxa = dxa
ax_offsets = stencil_factory.grid_indexing.axis_offsets(origin, domain)
self._compute_flux_stencil = stencil_factory.from_origin_domain(
func=compute_x_flux,
externals={
"“iord": iord,
"mord": abs(iord),
"xt_minmax": True,
"i_start": ax_offsets["i_start"],
"i_end": ax_offsets["i_end"],
h
origin=origin,
domain=domain,
)

lef __call__(

self,

g_in: FloatField,

c: FloatField,
g_mean_advected_through_x_interface: FloatField,

Args:

g_in (in): scalar to be integrated

c (in): Courant number (uxdt/dx) in x-direction defined on x-interfaces,
indicates the fraction of the adjacent grid cell which will be
advected through the interface in one timestep

q_mean_advected_through_x_interface (out): defined on x-interfaces.
mean value of scalar within the segment of gridcell to be advected
through that interface in one timestep, in units of g_in

self._compute_flux_stencil(
gq_in, c, self._dxa, q_mean_advected_through_x_interface
)

Lessons Learned So Far

Can replicate Fortran model in a DSL
GPU performance boost

DSL paradigm is good

h W b =

Still need communication between frontend modeling and backend

engineering

Driving Adoption

Excitement about using Jupyter
notebooks for model development

New tests and powerful Python
debugging

More attractive as features increase

and team grows...

¥ main ~ pace [examples / notebooks / stencil_definition.ipynb
Raw (B &

2840 lines (2840 loc) - 298 KB

Blame
Within TracerAdvection , the time step is split into 3 equal sub-steps, and all fields are divided by three, then advection is

Preview = Code

calculated for each of the substeps.
Allfields but delp are updated. Mass fluxes and Courant numbers are divided by 3 and then returned. So if we want to continue
advecting with the initial wind field, we actually need to re-set those fields to initial conditions after each step.

tracer_initial = cp.deepcopy (tracers)
mfxd_initial = cp.deepcopy(mfxd)
nfyd_initial = cp.deepcopy(mfyd)
crx_initial = cp.deepcopy (crx)
cry_initial = cp.deepcopy(cry)

tracer_state = [tracer_initial["tracer"]]

nSteps = 10

for step in range(nSteps):
tracer_advection(tracers, initial state["delp"], mfxd, mfyd, crx, cry)

tracer_state.append(tracers("tracer"])

mfxd =

mfyd =

crx = cp.deepcopy(crx_ii

cry = cp.deepcopy(cry_initial)
if mpi_rank == 0:

fig = plt.figure(figsize=(16, 4))
fig.patch.set_facecolor("white")
ax_before = fig.add_subplot(131)
ax_after = fig.add_subplot(132)
ax_diff = fig.add_subplot(133)

-0, vmax=1, cmap="viridis"

1 = ax_before.pcolormesh(
tracer_state[0].data[:, :, 0].T, vmil

)
plt.colorbar(fl, ax=ax_before)
ax_after.pcolormesh(
tracer_state[-1].data[:, :, 0].T, vmin=-0, vmax=1, cmap="viridis"
)
plt.colorbar(£2, ax=ax_after)
£3 = ax_diff.pcolormesh(
, 0] - tracer_state[0].data[:, :, 0]).T,

(tracer_state[-1].datal[:,
in=-0.5,

)
plt.colorbar(£3, ax=ax_diff)

ax_before.set_title("tracer concentration at t=0")
ax_after.set_title("tracer concentration after $s steps" % nSteps)

ax_diff.set_title("difference after ¥s steps” % nsteps)

plt.show()
[output:0]
tracer concentration at t=0 o tracer concentration after 10steps difference after 10 steps
e 04
08 08
20
02
06 06
15
I 00
o4 10

04

1 Top

VAaRd

Driving Adoption

Minimum Useful Model

Add capabilities modelers want,
meanwhile modelers keep developing
Fortran

What capabilities allow for quickest use
in research/forecasting/teaching?

e RCE on doubly-periodic domain
e Dycore wrapper for Fortran model
runs

https://en.m.wikipedia.org/wiki/File:Zeno_Achilles_Paradox.png

Lessons Learned So Far

Can replicate Fortran model in a DSL
GPU performance boost

DSL paradigm is good

h w0 bdb =

Still need communication between frontend modeling and backend
engineering
5. Performance isn’t enough

o Need to identify critical features for adoption

More physics
JAX backend for ML and DA applications
Research applications (RCE, LES, TC)

Incorporate into broader GFDL infrastructure

Growing collaboration and community

Image credit: Kun Gao

Thank you!

Former Al2 DSL team FV3 Team, Modeling Systems Division Collaborators

Aiz \:o‘o CSCS

UNIVERSITY of
WASHINGTON

o
kS
2 -

U MeteoSwiss

