
Heterogeneous HPC to the rescue? Ways to improve the energy efficiency of climate simulations today and tomorrow.

Jan Frederik Engels, DKRZ

Motivation

- Saving energy / using resources sustainably
- Mono-topical workload allows for good optimization
- Recent shifts in energy prices
- Increase in power efficiency between generations declines

Source: ndr.de / Verivox

Who?

Contributors:

- two BMBF projects (EECLIPS & EEHPC)
- Collaborators from various groups and departements in DKRZ
- Collaborators from the projects and elsewhere

DKRZ:

- 3MW, 3k Nodes, 130PB Storage, TOP 60
- AMD Milan & Nvidia A100
- Focus on German climate community, participation in EU-funded projects

Me:

- Applications and Services person
- Helping to put out fires where needed
- Leading the group working on EEHPC and EECLIPS

Outline

- The past: What has made a computing center energy-efficient?
- Or Today: What can we do with the existing machine to save energy?
- The future: Can heterogeneity rescue us?

Key performance indicators for computing centers

$$\begin{split} \mathsf{PUE} &= \mathsf{Power usage efficiency} \\ &= \frac{\mathsf{Total Energy}}{\mathsf{IT}\text{-}\mathsf{Equipment Energy}} \\ &\approx 1.1 \end{split}$$

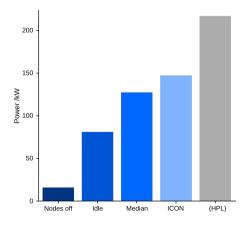
$$\begin{split} \mathsf{EUE} &= \mathsf{Energy} \text{ usage efficiency} \\ &= \frac{\mathsf{Total} \ \mathsf{Energy} - \mathsf{Reused} \ \mathsf{Energy}}{\mathsf{IT}\text{-}\mathsf{Equipment} \ \mathsf{Energy}} \\ &\approx 0.8 \end{split}$$

How to optimize?

- Reduce usage of cooling machines
 - Warmwater cooling
 - Free cooling for cold water
- Heating of neighbouring building
- Hot aisle containment
- . . .

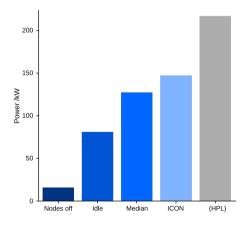
What does one aim for?

- Reducing power consumption?
- Reducing energy-to-solution?

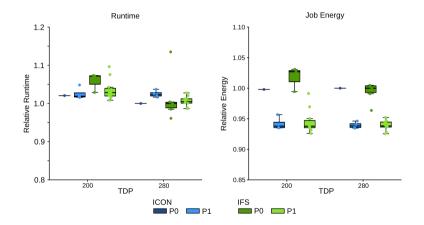

How much energy do we consume? And when?

• Measurement infrastructures

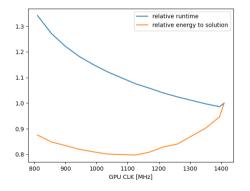
- Building
- Rack-PSUs
- Node
- Rapl / nvidia-smi
- Energy vs Power: $E = \int P(t) dT$

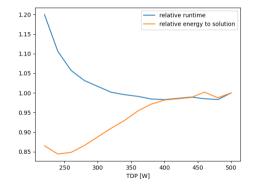


How much can we save?


Nodes off	19%
Idle	100%
Median	158%
ICON	181%

How much can we save?




- Wiggle room for optimization is low
- First order approximation: Reducing runtime is saving energy
- \Rightarrow Trivial saving: Switch off idle nodes.

CPU knobs (AMD Milan)

GPU knobs (NVIDIA A100, preliminary)

But what about inefficient resource usage?

Jan Frederik Engels, DKRZ

Improving energy efficiency of climate simulations

Raising awareness

Jan Frederik Engels, DKRZ

Improving energy efficiency of climate simulations

A coupled ICON simulation

		CPU	GPU / CPU	
	224	SDPD	231 SDPD	
	Nodes	Energy	Nodes	Energy
Atmosphere	130	37850 Wh	16	12000 Wh*
Ocean	16	4200 Wh	16	4250 Wh
Output	7	1150 Wh	7	1180 Wh

* preliminary

Heterogeneity beyond CPU-GPU-coupling?

Research questions:

- Can we setup an ICON simulation where each component runs on its most energy-efficient archictecture?
- What is the most energy-efficient architecture for a component?
- How to build a test-cluster for this?
- How much energy can this approach save?

First step: Measuring (sub-) components

time per iteration	nh_solver	icefem_solver	$ocean_vel_diffusion$	
SPR DDR	60.2	10.7	5.27	WIP
SPR HBM	32.8	10.2	2.55	WIP
Genoa	58.0	7.6	3.84	WIP
Aurora 1	86.4	WIP	WIP	WIP
A64FX	Compiler licence issues			
Grace Hopper	Awaiting delivery			
Grace Grace	Awaiting delivery			
(Levante A100-80)	Code parts missing / WIP			
(Aurora 3)	"2.4x faster than Aurora 1"			
(MI300?)	OpenACC support missing			

(preliminary)

First step: Measuring (sub-) components

energy per iteration	nh_solver	icefem_solver	$ocean_vel_diffusion$	
SPR DDR	7.79	1.04	0.56	WIP
SPR HBM	4.3	1.04	0.37	WIP
Genoa	5.43	0.15	0.36	WIP
Aurora 1	3.13	WIP	WIP	WIP
A64FX	Compiler licence issues			
Grace Hopper	Awaiting delivery			
Grace Grace	Awaiting delivery			
(Levante A100-80)	Code parts missing / WIP			
(Aurora 3)	"40% less than Aurora 1"			
(MI300?)	OpenACC support missing			

(preliminary)

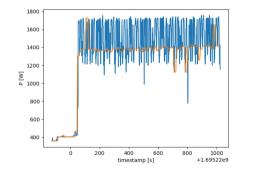
Next Steps

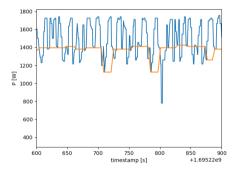
- Integrate the remaining architectures
- Define more (sub-)components and measure those
- Work out the optimal placement of components onto architectures
- Set up the ideal simulation

Ideas for components

- Atmosphere
- Atmospheric chemistry
- Radiation
- Ocean
- Ocean Biogeochemistry

• . . .


Thanks!


A big thanks for contributing to the work behind this talk:

- Pay Giesselmann, Julius Plehn, Erik Pfister
- Stephan Jaure (Eviden)
- ... our projects partners

Disclosure: AMD and Intel both sponsored CPUs for the heterogeneous test-cluster.

Aliasing

