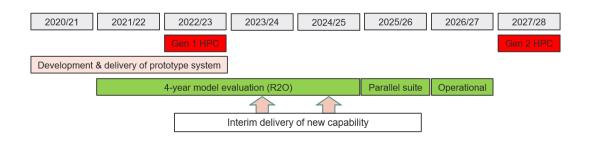
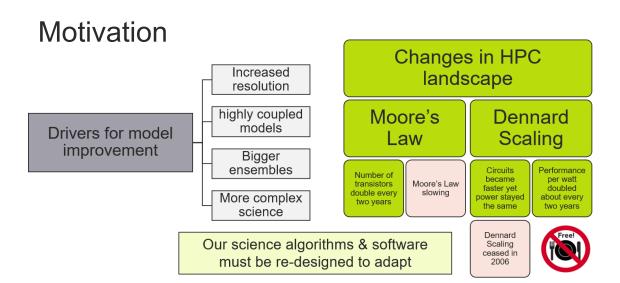


LFRic and NGMS: Meeting challenges of exascale through diversifying HPC

<u>Iva Kavčič, Met Office, UK</u> + many others!

20th ECMWF workshop on high performance computing in meteorology, 10 October 2023


Met Office Next Generation Modelling Systems (NGMS) Programme


NGMS Programme vision

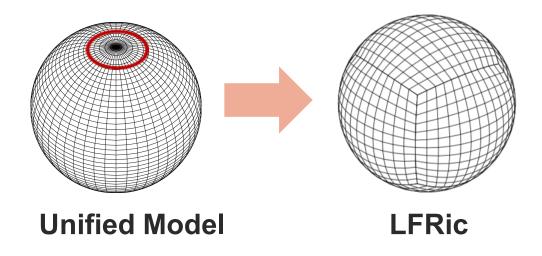
"To reformulate and redesign our complete weather and climate research and operational/production systems, including oceans and the environment, to allow the Met Office and its partners to fully exploit future generations of supercomputer for the benefits of society."

A reminder of timescales

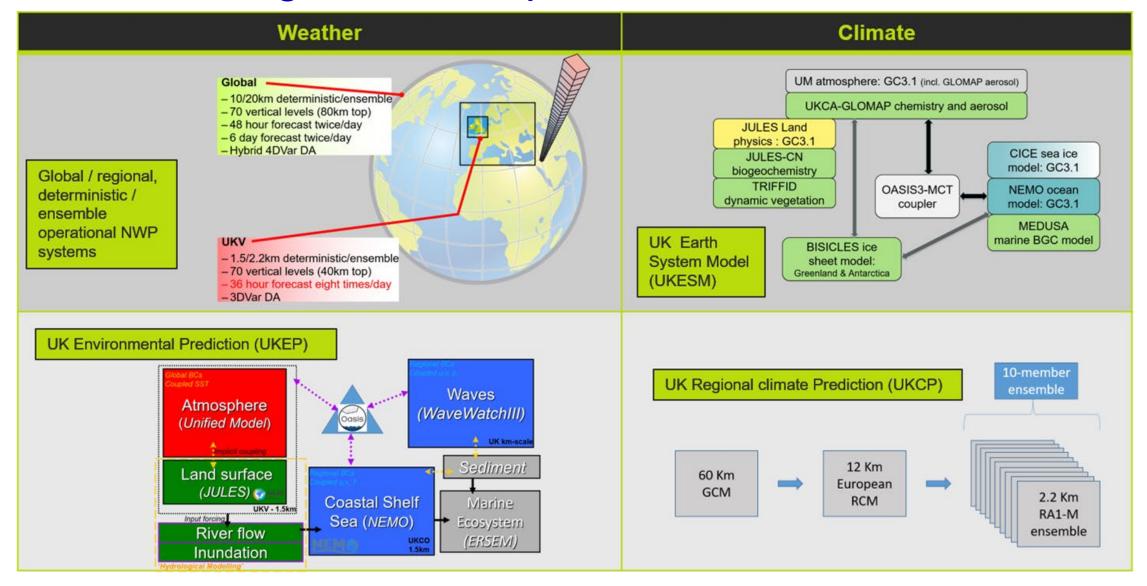

NGMS Benefits

Improved scalability

Grow external collaborations


Exploit new HPC

Enable new science


Atmosphere modelling system: GungHo dynamical core + LFRic Software Infrastructure + Separation of Concerns

- 1. Increased resolution
- 2. New dynamical core (**mesh** and spatial **discretisation**)
- 3. Performance portability

- 1. → Exascale computation (DSLs) and high volume of data (I/O).
- 2. → New data structures and layout (regridding; coupling; compiler support).
- New architectures
 (deployment of software stack).

Met Office Programme scope − what we have to consider

Met Office Programme scope - what does that mean

Observations

- JOPA obs processing (JEDI)
- JADA data assimilation (JEDI)
- NEMOVar
- LIS (land surface)

Atmosphere components

- GungHo dynamical core
- UM Physics
- UKCA chemistry

Infrastructure

- LFRic
- Rose
- Cylc
- XIOS
- ANTS
- PSyclone
- YAXT

Marine systems

- NEMO Ocean
- NEMO Sea Ice SI3
- MEDUSA& ERSEM biogeochemistry
- WaveWatch III wave model

Coupler

- OASIS
- ESMF

Land systems

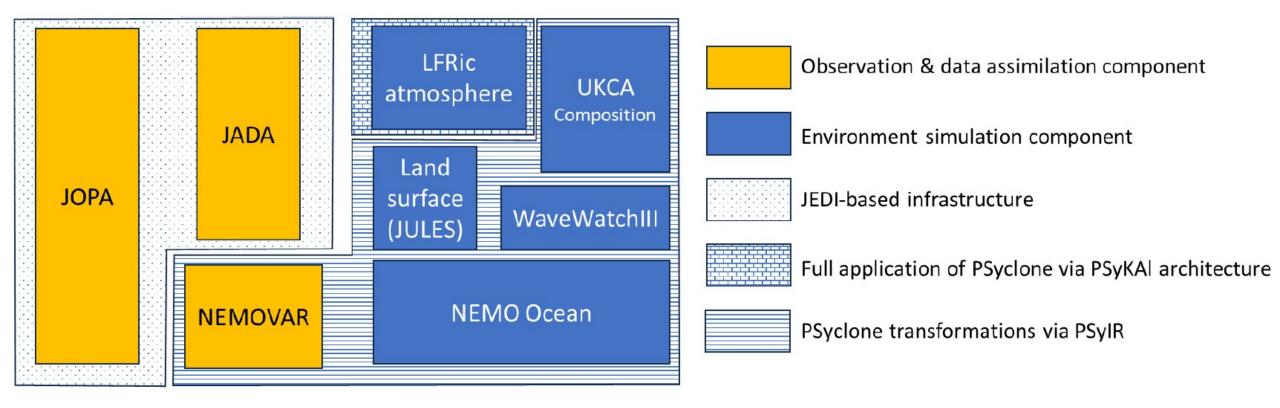
- HydroJULES land model
- BISICLES land ice

Verification

- MET
- TRUI
- ESMValTools

Visualisation

• IRIS (extended)



Managing diversity of platforms and workflows

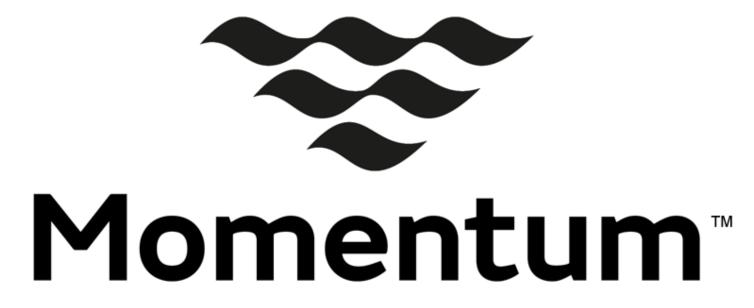
Separation of concerns

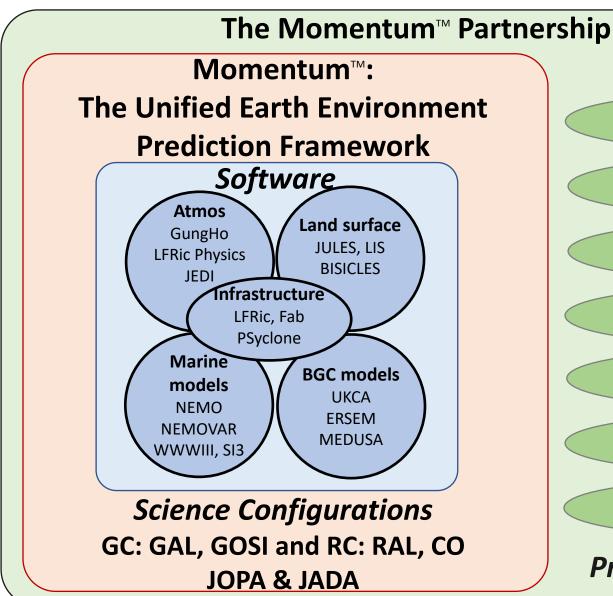
- Separating the science from the software framework (e.g. contributions from different institutions).
- Separating the coding of the scientific algorithms from the parallel implementation on specific architectures (e.g. domain-specific languages).

Met Office

Schematic of the main components of Momentum and their approaches to a separation of concerns (Wood et al, 2023)

PSyKAI = Parallel System, Kernel, Algorithm; PSyIR = PSyclone Internal Representation (STFC)


JEDI = Joint Effort for Data assimilation Integration (JCSDA)



<u>PSyclone</u> ("PSy" + "clone") is a domain-specific compiler and source-to-source translator to provide performance portability and separation of concerns. (Sergi Siso's talk on Friday 13th October)

- A tool to record and apply the knowledge of HPC experts: optimisations
 encoded as a 'recipe' (scripts) rather than baked into the scientific source code.
- Different recipes for different computer architectures (CPU, GPU); Supports
 distributed and shared-memory parallelism.
- Used in all main aspects of Momentum[™] Framework: Atmosphere modelling system (LFRic), Marine modelling system (NEMO), Data Assimilation (PSyAD = "PSyclone ADjoint", adjoint code generation).

The Unified Earth Environment Prediction Framework

MOGREPS GLOSEA UKESM ACCESS NCUM GALWEM NZESM Prediction Systems

Software comprising the model codes and supporting infrastructure *provides the ability to run regional and global applications*

Science Configurations define the way model codes are run for regional or global applications

Prediction Systems *enable delivery of forecasts and predictions*

NGMS project status – October 2023

green=active; purple=closed; blue=ExCALIBUR-resourced

NG-UX

- Julia Cantarano [George Pankiewicz]
- Develop and inaugural delivery of NGMS training material transitioning to BaU. This project will include aspects of usability

GungHo Atmosphere Science Project

Ben Shipway [Nigel Wood]

 Develop atmospheric science aspects & deliver model scientifically as good as UM

LFRic Infrastructure Development

Steve Mullerworth

[JC Rioual]

Deliver infrastructure to replace the UM scalable for future platforms

LFRic Inputs

Iva Kavčič [JC Rioual]

- •Tools to ingest fixed & time-varying fields.
- •Include initial conditions, ancillary fields and LBCs

NG-VAT

Kevin Wheeler [Glenn Greed]

Analysis & visualisation of LFRic model data with Iris

NG-Marine Systems

Mike Bell [Andy Saulter]

 Deliver scalable marine systems including ocean, sea-ice & wave models

NG-Coupling

JC Rioual [Ben Shipway]

OASIS3-MCT coupled components

RAL3-LFRic

Mike Bush [Huw Lewis]

 Deliver LFRic-based RAL3 research configuration as a well-tested & understood baseline for future developments

NG-PAO

David Simonin [Chiara Piccolo]

- •JEDI as a DA framework
- Processing of NWP observational data for NG-DA

GC5-LFRic

Maria Carvalho [Alistair Sellar]

•Development & evaluation of GC for Climate & NWP within LFRic framework

FAB Build System

Rich Gilham [Glenn Greed]

• Development of new build systems for NGMS components

NG-R2O

Mike Thurlow [David Walters]

•Support transition of NGMS capability from research to NWP operations

NG-Composition

Fiona O'Connor [Matt Hort]

Coordination of aerosol & chemistry development within NGMS

NG-Ver

Phil Gill [Joanne Robbins]

 Development of NWP verification capability for NGMS

NG-R2C

- •Jon Seddon [Richard Wood]
- •Support transition of capability from research to climate production

NG-Name

- •Ben Devenish [Matt Hort]
- Development of dispersion models (e.g. NAME) for next generation computing

NG-Integration

- Sam Adams [JC Rioual]
- Provide a focus for IO development, cloud computing and integration

NG-Optimisation

- Chris Maynard [JC Rioual]
- Optimisation of NGMS components with initial focus on LFRic

Diversity of skills and people

Role: Scientific Software Engineer*, Met Office

- Recruitment
- Training
- Community

a.k.a Research Software Engineer

RSECon23, Swansea, 5-7 September 23

(Met Office one of the sponsors)

Is Research Software Engineering coming of age?

- Neil Chue Hong
- Director of the Software Sustainability Institute

These slides are licensed under CC BY 4.0 For more information:

https://creativecommons.org/licenses/by/4.0/

You are free to reuse any of the slides, crediting Chue Hong, Neil (2023). Is Research Software Engineering coming of age?

https://doi.org/10.6084/m9.figshare.24078054

Picture credits available in slide notes

The modal RSE

Has an ORCID

Is named as a co-author

all the time Uses Git

open source

Uses

Uses Python

Uses GNU/Linux

On a permanent contract

Is male
Is white

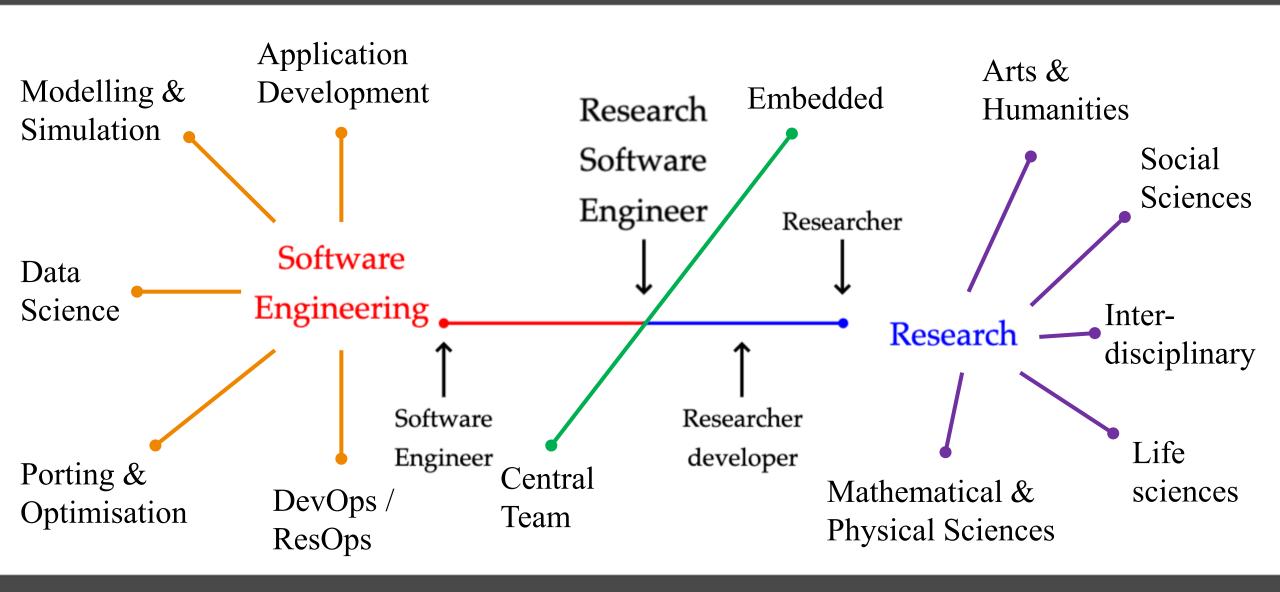
Has a PhD

In the sciences

Works for a

university

Bus factor of 1


Has been to an RSE conference

https://softwaresaved.github.io/international-survey-2022

In the

sciences

Recruiting for diversity: Generic SSE campaign

- SSE teams (Science IT) and embedded SSEs (predominantly science teams).
- No explicit requirement for a degree and/or language tools.
- **Technical skills:** Interest (Foundation SSE), ability (SSE) and leadership role (Senior SSE) in developing/maintaining software applications and QA (assessment by programming exercise and interview).
- Interpersonal skills: Teamworking and communication with diverse audience, prioritising (FSSE/SSE) or/and managing work (SSE) to deliver outcomes. Desire and ability to learn and apply new skills.
- Encourage people who are changing careers or/and returning to workforce after a career break. Adjustments under Disability Confident Scheme.

Training and skills development

- SSE Induction Programme (within 6-12 months from joining the office).
 - Training courses (external providers, more experienced colleagues).
 - Work in a new starter's main role (from simple to complex tasks).
 - Two short projects (often unrelated to work, working together with peers).
 - Include Industrial Placement Students and Apprentices.
 - Feedback from participants to improve process.
- o Placements/secondments in other teams (usually 3 to 6 months).
- Continuous professional development (e.g. workshops/conferences, moving teams, projects with external partners) and knowledge transfer.

Met Office

Community

Met Office SSEs at RSECon23

- SSE Community of Practice.
- Staff networks (e.g. new starters, skills-related, general interests, EDI).
- Mentoring scheme.
- Supportive working environment: collaboration spaces and quiet spaces, arrangements for specific needs.

A good place to develop (research) software engineering skills!

www.metoffice.gov.uk

Questions?

(Some) References

- ➤ Wood et al. (2023), Seamless environmental, weather and climate predictions for Exascale era computing: building MomentumTM, Bulletin of AMS, submitted.
- Sergeev et al. (2023), <u>Simulations of idealised 3D atmospheric flows on terrestrial</u> <u>planets using LFRic-Atmosphere</u>, Geophysical Model Development, volume 16, issue 19, 5601–5626.
- Adams et al. (2019), <u>LFRic: Meeting the challenges of scalability and performance portability in Weather and Climate models</u>, Journal of Parallel and Distributed Computing, 132, 383-396.
- > PSyclone documentation: https://psyclone.readthedocs.io