National Aeronautics and Space Administration

Domain-Specific Language (DSL) Adoption into NASA's Goddard Earth Observing System (GEOS) Model

October 13, 2023

Purnendu Chakraborty, Florian Deconinck, Christopher Kung

www.nasa.gov

- Motivation
- DSL Integration Strategy
- Validation : Held-Suarez & Aquaplanet
- Optimization
- Ported physics packages to GPU via OpenACC
- Next Steps

Motivation

- DSL Integration Strategy
- Validation : Held-Suarez & Aquaplanet
- Optimization
- Ported physics packages to GPU via OpenACC
- Next Steps

Next-Generation Goddard Earth Observing System (GEOS) code

Goal : Develop the next generation GEOS model that enables an increase in resolution and scalability to meet future NASA Global Modeling and Assimilation Office (GMAO) requirements.

Team

- Developers : Purnendu Chakraborty, Florian Deconinck, Chris Kung
- Support : GMAO Software Integration Team, NASA Center for Climate Simulation (NCCS)
- Management : Craig Pelissier, Bill Putnam, Dan Duffy, Tsengdar Lee
- External Collaborators : NOAA, NVIDIA, ETH Zurich's SPCL and CSCS, Al2

GEOS Future Requirements

Production support for Coupled Data Assimilation

- Numerical Weather Prediction: 6-km Atmosphere Model (ATM) coupled to 6-km Ocean Model (OCN)
- Sub-Seasonal to Seasonal Predictions: 25-km ATM coupled to 25-km OCN (Ensemble members creating 30- to 90-day predictions)
- Reanalysis: 12-km ATM coupled to 12-km OCN

Ultra-high resolution global Nature Runs for Climate Observing System Simulation Experiments

- Coupled 3-km ATM and 3-km OCN
- Carbon and chemistry: 3- to 1-km ATM
- Global convection resolving weather: < 1 km ATM

Motivation

DSL Integration Strategy

- Validation : Held-Suarez & Aquaplanet
- Optimization
- Ported physics packages to GPU via OpenACC
- Next Steps

Approach / Strategy

 Leverage heterogeneous architectures via Domain Specific Language (DSL) and OpenACC

- Recognize that accelerator-based heterogeneous systems provide a promising platform to meet future GEOS requirements.
- DSL : Programming language specialized to a particular domain
 - DSL adoption creates an opportunity to create portable and scalable code across multiple platforms, including traditional CPU systems and accelerator-based systems, by abstracting away details of the computing architecture
 - For GEOS, we utilize the GridTools for Python (GT4Py) DSL

 Incorporate a GT4Py port of Geophysical Fluid Dynamics Laboratory's (GFDL) dynamical core (FV3) created by Vulcan / Allen Institute for AI (AI2) into GEOS

- GT4Py-ported FV3 (gtFV3) is a non-hydrostatic code used for global storm-resolving modeling
- Leverage DSL without extensive investment in code rewriting / refactoring

Some definitions

GT4Py (GridTools for Python)

- GridTools
 - C++ DSL
 - Express "stencil"-like patterns concisely
 - Multiple backends OpenMP(CPUs)/CUDA/HIP
 - Easy switching between backends
- Frontend code in Python

gtFV3¹

• GT4Py port of (Fortran) FV3

GEOS

GPU Porting Approach

- Motivation
- DSL Integration Strategy
- Validation : Held-Suarez & Aquaplanet
- Optimization
- Ported physics packages to GPU via OpenACC
- Next Steps

Validation Case – Held-Suarez

FV3 – HS vs gtFV3 – HS (OpenACC)

FV3 (CPU), HS (CPU)

Zonal mean of U-winds averaged over 30 days

Validation Case - Aquaplanet

Aquaplanet-FV3 Vs Aquaplanet-gtFV3 – comparing time averages

- Assembled application (one codebase, one build, choose FV3/gtFV3 at runtime), resolved significant differences between old/new FV3 and gtFV3
- From data dump (C180 50km), ran 18 months simulation (6 months spin-up + 12 months analysis) for both cases
- Compared time-averaged zonal means over the analysis period

- Motivation
- DSL Integration Strategy
- Validation : Held-Suarez & Aquaplanet
- Optimization
- Ported physics packages to GPU via OpenACC
- Next Steps

GEOS-gtFV3 Performance Strategy

Many-processes vs Many-threads

- GEOS currently uses a many-processes paradigm: one CPU core per task, with problems divided in smaller problems.
- GPUs are built for many-threads paradigm: one GPU per problem computed across many-threads, with the bigger problem size that fits memory.

Due to the hybrid nature of our work, we need solutions that can do both

- Solution 1 : Map many-processes onto GPUs via NVIDIA's Multi-Process Service (MPS).
- Solution 2 : Multi-level domain decomposition for physics and dynamics
 - GMAO SI Team is adding GEOS framework capabilities that will create multi-level domains. Development is ongoing.
 - Enables optimal hardware usage: GPU is given the entire problem at once, CPU is given a smaller chunk of the problem.

GEOS-gtFV3 Benchmarks: GPU vs CPU node

- The benchmark setup compares a CPU-node with a GPU-node as available on Discover.
- Discover Hardware Setup
 - CPU: AMD EPYC 7402, 24 cores
 - GPU: NVIDIA A100, 40 GB VRAM
 - Node: 2x CPU, 4x GPU, 2x InfiniBand
 - Using **MPS**: 12 CPU cores per GPU (node to node)

Experiment

- Held-Suarez configuration
- Mainly focus on the dynamical core performance
- Performance comparison based on 24-hour simulation
- 30-day simulation to check for stability

GEOS-gtFV3 Held-Suarez Performance Comparison

• Fortran: 3h 49m

•

• Hybrid GPU/CPU: 2h 21m (**1.62x** speedup consistent with 24-hour benchmark)

- Motivation
- DSL Integration Strategy
- Validation : Held-Suarez & Aquaplanet
- Optimization
- Ported physics packages to GPU via OpenACC
- Next Steps

OpenACC for Physics

• Why OpenACC?

- Development remains in Fortran
- Flexibility : GT4Py structures code based on stencil computations, making it less flexible if an algorithm doesn't easily map into a stencil.

What about "proprietary-ness"?

- OpenACC may not be the final solution since it's (mostly) NVIDIA-centric and OpenACC compilers (generally) are not available or less optimal for non-NVIDIA GPUs.
- The OpenACC implementation can guide development of an OpenMP-offloading implementation

General OpenACC Porting Methodology

- Create a CPU-based standalone code containing physics schemes that verifies with input and output data generated from GEOS
- Apply OpenACC to parallelizable code sections within the CPU-based standalone code
- Verify that OpenACC standalone code computes data that closely matches GEOS generated data

Status of OpenACC Physics Standalones

Moist	OpenACC
fillq2zero	\checkmark
buoyancy	\checkmark
buoyancy2	\checkmark
aer_activation	\checkmark
cup_gf (v GF2020)	In progress
<pre>gfdl_cloud_microphys_driver</pre>	\checkmark
<pre>evap_subl_pdf_loop</pre>	\checkmark
radcoup_loop	\checkmark
uw_shallow_convection	\checkmark

Turbulence	OpenACC
run_edmf	\checkmark
vtrisolvesurf	\checkmark
vtrilu	\checkmark
update_moments	\checkmark

Gravity Wave	OpenACC
ncar_gwd	\checkmark
Radiation	OpenACC

 \checkmark

RRTMGP

OpenACC Physics Integration Approach

.

Run	1	604.914	71.76	0.583	0.07
EXTDATA	192	0.047	0.01	0.047	0.01
GCM	384	585.390	69.45	23.405	2.78
AGCM	384	561.199	66.58	32.470	3.85
SUPERDYNAMICS	576	227.025	26.93	0.512	0.06
DYN	576	226.513	26.87	226.513	26.87
PHYSICS	384	301.680	35.79	4.721	0.56
GWD	384	8.924	1.06	8.924	1.06
MOIST	384	156.577	18.58	156.577	18.58
TURBULENCE	576	20.380	2.42	20.380	2.42
CHEMISTRY	576	20.937	2.48	0.121	0.01
CHEMENV	576	10.521	1.25	10.521	1.25
PCHEM	384	8.298	0.98	8.298	0.98
GOCART.data	576	1.998	0.24	1.998	0.24
SURFACE	576	5.523	0.66	1.648	0.20
SALTWATER	576	3.875	0.46	0.268	0.03
SEAICETHERMO	576	1.130	0.13	1.130	0.13
OPENWATER	576	2.477	0.29	2.477	0.29
RADIATION	384	84.619	10.04	0.314	0.04
SOLAR	384	53.611	6.36	53.611	6.36
IRRAD	384	21.464	2.55	21.464	2.55
SATSIM	384	9.229	1.09	9.229	1.09
ORBIT	384	0.024	0.00	0.024	0.00
AIAU	192	0.010	0.00	0.010	0.00
ADFI	384	0.044	0.01	0.044	0.01
OGCM	384	0.732	0.09	0.410	0.05
ORAD	384	0.052	0.01	0.052	0.01
SEAICE	384	0.146	0.02	0.058	0.01
DATASEAICE	384	0.088	0.01	0.088	0.01
OCEAN	384	0.125	0.01	0.069	0.01
DATASEA	384	0.055	0.01	0.055	0.01
HIST	384	18.893	2.24	18.893	2.24

- Statistics from "RUN" portion of GEOS Aquaplanet setup
 - 96 ranks / 8 GPUS
- Overall Physics : ~50% of "RUN" execution time
 - Moist : ~25% of "RUN" execution time
 - Radiation : ~14% of "RUN" execution time
- Plan : Integrate OpenACC-ported Moist
 physics for greatest initial potential to reduce
 execution time

Measured wallclock time

OpenACC Physics Integration: Moist

Times for component <MOIST>

		Min			Mean			Max		PE	:	# cycles
Name	8	inclusive	exclusive	98 1	inclusive	exclusive	8	inclusive	exclusive	max	min	
MOIST	0.00	135.47	0.00	0.00	160.18	0.00	0.00	184.86	0.00	00003	00022	387
SetService	0.01	0.02	0.02	0.03	0.05	0.05	0.04	0.08	0.08	00024	00090	1
generic	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00034	00053	1
Initialize	0.04	1.72	0.05	0.09	1.76	0.14	0.10	1.85	0.20	00003	00092	1
generic	1.27	1.58	1.58	1.01	1.63	1.63	0.86	1.73	1.73	00000	00029	1
Record	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00088	00029	192
generic	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00079	00055	192
Run	0.00	126.44	0.00	0.00	151.20	0.00	0.00	175.83	0.00	00032	00068	192
GenRunMine	13.11	126.44	16.28	13.30	151.20	21.30	12.81	175.83	25.68	00009	00084	192
CONV_TRACERS	0.07	0.09	0.09	0.06	0.09	0.09	0.05	0.10	0.10	00043	00085	192
AERO_ACTIVATE	0.09	0.11	0.11	0.07	0.11	0.11	0.07	0.14	0.14	00040	00038	192
GF	30.66	38.06	38.06	28.76	46.07	46.07	29.22	58.59	58.59	00089	00045	192
UW	20.88	25.93	25.93	25.20	40.36	40.36	27.25	54.64	54.64	00041	00002	192
GFDL_1M	2.88	35.28	3.58	2.26	43.27	3.62	1.84	51.22	3.68	00047	00024	192
CLDMACRO	7.16	8.89	8.89	6.15	9.86	9.86	5.63	11.29	11.29	00039	00005	192
CLDMICRO	18.05	22.41	22.41	18.60	29.80	29.80	18.56	37.21	37.21	00044	00028	192
Finalize	0.00	7.17	0.00	0.00	7.17	0.00	0.00	7.17	0.00	00042	00094	1
generic	5.77	7.17	7.17	4.47	7.17	7.17	3.57	7.17	7.17	00005	00000	1

- GF: Contains cup_gf (v GF2020)
- UW: Contains uw_shallow_convection
- GFDL_1M: Contains gfdl_cloud_microphys, evap_subl_pdf_loop, radcoup_loop

Moist Standalone Runtimes

Standalone	CPU Runtime (sec)	GPU Runtime (sec)	GPU Speedup
aer_activation	$6.24 imes 10^{-1}$	$8.70 imes10^{-3}$	71.8
buoyancy	$5.38 imes10^{-3}$	$1.99 imes10^{-4}$	27.1
evap_subl_pdf_loop	$7.50 imes10^{-1}$	$7.18 imes10^{-3}$	104.4
fillq2zero	$7.86 imes10^{-3}$	$1.10 imes 10^{-4}$	71.5
<pre>gfdl_cloud_microphys_driver</pre>	$1.64 imes10^{ m 0}$	$1.04 imes10^{ m 0}$	1.58
radcoup_loop	$1.72 imes 10^{-1}$	$1.20 imes10^{-3}$	143.4
cup_gf (v GF2020)	$1.43 imes 10^{-1}$	TBD	TBD
buoyancy2	$1.20 imes10^{\circ}$	$2.64 imes10^{-2}$	45.5

- Resolution : C180 (180 x 180 x 72)
- Compiler : nvfortran v22.3
- CPU : AMD EPYC 7402
- GPU : NVIDIA A100-SMX4 40 GB
- CPU runtimes are single core execution times
- Listed runtimes are the average of standalone runtimes from 6
 different input sets
- Timings do not measure data transfer time between host and device

OpenACC Physics Integration Status

Timer	Routines	Porting status ¹	Integration status ²
Total	buoyancy	Ported	Builds and runs
	buoyancy2	Ported	
CONV_TRACERS			
AERO_ACTIVATE	aer_activation	Ported	Builds
GF	cup_gf	Porting	
UW	uwshcu_inv	Porting	
GFDL_1M			
CLDMACRO	<pre>evap/subl/pdf (loop)</pre>	Ported	Builds
CLDMICRO	gfdl_cloud_microphys	Ported	Builds
	radiation coupling (loop)	Ported	Builds
	fillq2zero	Ported	Builds and runs
In-between code		Х	Х

¹ Standalone, NVIDIA Fortran

² Integration into GEOS, GNU Fortran

- Motivation
- DSL Integration Strategy
- Validation : Held-Suarez & Aquaplanet
- Optimization
- Ported physics packages to GPU via OpenACC
- Next Steps

Thank you!

purnendu.chakraborty@nasa.gov florian.g.deconinck@nasa.gov christopher.w.kung@nasa.gov