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Motivation 

Original source
CPU 1 only

GPU A
port

GPU A 
optimized

GPU B
port

CPU 1 
optimized

CPU 1
optimized

CPU 2
port

Getting 
complicated!

No worries

Just one special 
case, it’s worth it!

Source versions over time

• Classically it was enough to optimize for 
one architecture, generally CPU

• New systems can combine architectures 
including CPU, GPU, AI, FPGA

• Ambitious goals for model detail, 
collaboration, AI integration, etc. demand 
support for new architectures, with 
sufficient performance

• But the complexity and maintenance 
burden of the resulting codebase must be 
controlled!
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Example: starting from FORTRAN

Fortran 
MPI+OMP

C/C++

CUDA

HIP

SYCL

DSL / 
Framework

OpenACC

OMP 
Target

Do 
Concurrent

• Multiple ways to serve a given 
set of platforms

• Each implementation has:
• Porting cost

• Supported platforms

• Optimization opportunities

• A relationship to existing code
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Kernel Optimization

• Within a given language or framework, we also make optimization choices for different 
targets, with similar trade-offs

• AoS vs SoA data layout

• Loop nesting

• cache blocking

• etc
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Performance Portability & Productivity

• It is important to support and perform well on multiple platforms

• Most would prefer to not write a custom version for each platform

• But having the option to optimize for a specific platform can be valuable 

• Very important to avoid creating code maintenance problems
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Performance Portability & Productivity

• Can we move past vague generalizations?

P3 
Analysis

Metrics

• Performance 
Portability

• Performance  
Productivity

Visualizations

• Cascade Plot

• Dendrogram

• Portability-
Convergence chart

Software Tools

• P3 library

• Code Base 
Investigator
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Preliminary: Performance Efficiency

• How well does a specific app perform on a specific platform?

• In the context of the following metrics, two suggested choices, depending on our goal:

• Architectural Efficiency: Achieved performance relative to peak theoretical limit of the given 
hardware

• Classic example: Roofline plots

• Application Efficiency:  Achieved performance relative to the best observed for the given 
application on the given platform

• Good when it’s not clear which HW limits practically apply

• See “Implications of a metric for performance portability” for more info



Intel ConfidentialDepartment or Event Name 820th ECMWF Workshop on HPC in Meteorology 8

Performance Portability

• Can we measure how performance 
portable a given application is across a 
chosen set of platforms?

• The Harmonic Mean of the performance 
efficiencies of app a solving problem p 
across target platform set H.

• your choice of performance efficiency 
metric

• Useful properties:

• If any platform is unsupported, metric is 0

• Proportional to sum of efficiencies; 
increases when any of them increase

• Fixing worst platform is the fastest way to 
improve

From “Implications of a metric for performance portability”
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PP Visualization: Cascade Chart

• Visualize performance portability of 
multiple apps relative to a set of target 
architectures, and how well it each does 
across the target architectures

• In this specific case, three versions of a 
SYCL kernel across 6 HW platforms (2 
CPU, 4 GPU), using Application Efficiency

• Generated using the P3 Analysis Library 
from performance measurements of all 
combinations

• See “Interpreting and visualizing 
performance portability metrics” for more 
info
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Code Divergence

• Assume we maintain multiple apps which solve 
the same problem across different platforms: 
How different are the sources from each other? 

• Code Divergence is the average of the 
distances between each pair of codes. In this 
case using Jaccard distance

• Jaccard distance: dissimilarity metric between 
the two sets of source lines, range [0,1]

• Useful to approximate future cost of 
maintenance & of adding one more platform

• Different from one-time development cost of 
given apps

From “Navigating Performance, Portability and Productivity”
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Code Divergence

• As an example, we can compare OpenACC 
versions of a cloud microphysics code 
(ECMWF’s Cloudsc) to the Fortran baseline

• Code Divergence as in previous slide, based on 
Jaccard distance, including both host / driver 
side and kernel side code

• Note: Sometimes two versions of a program 
have similar sources, but kept as separate files, 
for clarity. This may have consequences for  
divergence metric as currently defined

• Though in a way it reflects practical issues 
as well

OpenACC implementation Code Divergence vs baseline

Basic 0.014 (1.4%)

“hoist” version 0.61 (61%)

“scc” version 0.065 (6.5%)
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Code Divergence Visualization: Dendrogram

• A dendrogram illustrates Code Divergence 
relationships among a set of applications

• Apps connected more closely (left) are 
more similar, less divergent

• The Code Base Investigator tool (on 
Github) was used for the creation of this 
chart, as well as computing the Code 
Divergence metric.

• Counts SLOC per version, guided by user info on 
source files and compile time variables
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Putting it Together

• This chart combines:
• Code Convergence on X-axis
• Performance Portability on Y-axis

• Graphical representation of the P3 status of a 
given codebase targeting a given set of 
platforms

• Our position can give us clues about what to 
do next

• Bottom Right: one version, not portable

• Target-specific optimizations aim high, but 
incur large code divergence (top left)

• Ultimate goal: top right, single source, peak 
performance across the board

• It may make sense to aim for practical 
thresholds, e.g., 80%
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General Patterns

• Every change to the codebase can be seen as 
a movement in this space, e.g.,

• DSLs and high-level abstractions can enable 
good performance on multiple platforms with 
relatively little code divergence; but it may be 
harder to optimize each platform to the limit

• Lower-level abstractions like SYCL incur more 
code divergence than a DSL, but retain high 
optimization potential

• If we start from a highly specialized codebase, 
we can improve code divergence by 
introducing common abstractions, though we 
may struggle to maintain the same 
performance as we do so
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Further thoughts

• Abstractions are good for Perf. Portability
• Can exist at several levels 

• Especially good if work on implementation 
layers is shared/re-used

• Also good if possibilities remain open for 
further optimization

• Fortran makes things a bit tricky

• Fewer DSL & Framework choices vs C/C++ 
or Python; significant incentive to migrate

• AI integration
• Interfaces & Translation layers can help, 

though complexity suffers

• Automated translation
• One-time translation (E.g. Intel’s SYCLomatic 

CUDA → SYCL tool) may help with porting cost, 
But doesn’t really address Code Divergence

• Effect of compile-time translation may depend 
on specifics: how much it constrains design 
decisions, how difficult to get a well-optimized 
result

• Integration: A weather prediction suite has 
many pieces with different characteristics

• Complexity of making the right choice for an 
integrated result

• “same approach across all pieces” vs. “the right 
approach for each piece”?

• All at once, or incrementally?
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