
Performance Portability & Productivity in
the Porting of Weather Codes to
Heterogeneous Platforms
Camilo Moreno

(camilo.a.moreno@intel.com)

mailto:camilo.a.moreno@intel.com

Intel ConfidentialDepartment or Event Name 220th ECMWF Workshop on HPC in Meteorology 2

Motivation

Original source
CPU 1 only

GPU A
port

GPU A
optimized

GPU B
port

CPU 1
optimized

CPU 1
optimized

CPU 2
port

Getting
complicated!

No worries

Just one special
case, it’s worth it!

Source versions over time

• Classically it was enough to optimize for
one architecture, generally CPU

• New systems can combine architectures
including CPU, GPU, AI, FPGA

• Ambitious goals for model detail,
collaboration, AI integration, etc. demand
support for new architectures, with
sufficient performance

• But the complexity and maintenance
burden of the resulting codebase must be
controlled!

Intel ConfidentialDepartment or Event Name 320th ECMWF Workshop on HPC in Meteorology 3

Example: starting from FORTRAN

Fortran
MPI+OMP

C/C++

CUDA

HIP

SYCL

DSL /
Framework

OpenACC

OMP
Target

Do
Concurrent

• Multiple ways to serve a given
set of platforms

• Each implementation has:
• Porting cost

• Supported platforms

• Optimization opportunities

• A relationship to existing code

Intel ConfidentialDepartment or Event Name 420th ECMWF Workshop on HPC in Meteorology 4

Kernel Optimization

• Within a given language or framework, we also make optimization choices for different
targets, with similar trade-offs

• AoS vs SoA data layout

• Loop nesting

• cache blocking

• etc

Intel ConfidentialDepartment or Event Name 520th ECMWF Workshop on HPC in Meteorology 5

Performance Portability & Productivity

• It is important to support and perform well on multiple platforms

• Most would prefer to not write a custom version for each platform

• But having the option to optimize for a specific platform can be valuable

• Very important to avoid creating code maintenance problems

Intel ConfidentialDepartment or Event Name 620th ECMWF Workshop on HPC in Meteorology 6

Performance Portability & Productivity

• Can we move past vague generalizations?

P3
Analysis

Metrics

• Performance
Portability

• Performance
Productivity

Visualizations

• Cascade Plot

• Dendrogram

• Portability-
Convergence chart

Software Tools

• P3 library

• Code Base
Investigator

Intel ConfidentialDepartment or Event Name 720th ECMWF Workshop on HPC in Meteorology 7

Preliminary: Performance Efficiency

• How well does a specific app perform on a specific platform?

• In the context of the following metrics, two suggested choices, depending on our goal:

• Architectural Efficiency: Achieved performance relative to peak theoretical limit of the given
hardware

• Classic example: Roofline plots

• Application Efficiency: Achieved performance relative to the best observed for the given
application on the given platform

• Good when it’s not clear which HW limits practically apply

• See “Implications of a metric for performance portability” for more info

Intel ConfidentialDepartment or Event Name 820th ECMWF Workshop on HPC in Meteorology 8

Performance Portability

• Can we measure how performance
portable a given application is across a
chosen set of platforms?

• The Harmonic Mean of the performance
efficiencies of app a solving problem p
across target platform set H.

• your choice of performance efficiency
metric

• Useful properties:

• If any platform is unsupported, metric is 0

• Proportional to sum of efficiencies;
increases when any of them increase

• Fixing worst platform is the fastest way to
improve

From “Implications of a metric for performance portability”

Intel ConfidentialDepartment or Event Name 920th ECMWF Workshop on HPC in Meteorology 9

PP Visualization: Cascade Chart

• Visualize performance portability of
multiple apps relative to a set of target
architectures, and how well it each does
across the target architectures

• In this specific case, three versions of a
SYCL kernel across 6 HW platforms (2
CPU, 4 GPU), using Application Efficiency

• Generated using the P3 Analysis Library
from performance measurements of all
combinations

• See “Interpreting and visualizing
performance portability metrics” for more
info

Intel ConfidentialDepartment or Event Name 1020th ECMWF Workshop on HPC in Meteorology 10

Code Divergence

• Assume we maintain multiple apps which solve
the same problem across different platforms:
How different are the sources from each other?

• Code Divergence is the average of the
distances between each pair of codes. In this
case using Jaccard distance

• Jaccard distance: dissimilarity metric between
the two sets of source lines, range [0,1]

• Useful to approximate future cost of
maintenance & of adding one more platform

• Different from one-time development cost of
given apps

From “Navigating Performance, Portability and Productivity”

Intel ConfidentialDepartment or Event Name 1120th ECMWF Workshop on HPC in Meteorology 11

Code Divergence

• As an example, we can compare OpenACC
versions of a cloud microphysics code
(ECMWF’s Cloudsc) to the Fortran baseline

• Code Divergence as in previous slide, based on
Jaccard distance, including both host / driver
side and kernel side code

• Note: Sometimes two versions of a program
have similar sources, but kept as separate files,
for clarity. This may have consequences for
divergence metric as currently defined

• Though in a way it reflects practical issues
as well

OpenACC implementation Code Divergence vs baseline

Basic 0.014 (1.4%)

“hoist” version 0.61 (61%)

“scc” version 0.065 (6.5%)

Intel ConfidentialDepartment or Event Name 1220th ECMWF Workshop on HPC in Meteorology 12

Code Divergence Visualization: Dendrogram

• A dendrogram illustrates Code Divergence
relationships among a set of applications

• Apps connected more closely (left) are
more similar, less divergent

• The Code Base Investigator tool (on
Github) was used for the creation of this
chart, as well as computing the Code
Divergence metric.

• Counts SLOC per version, guided by user info on
source files and compile time variables

Intel ConfidentialDepartment or Event Name 1320th ECMWF Workshop on HPC in Meteorology 13

Putting it Together

• This chart combines:
• Code Convergence on X-axis
• Performance Portability on Y-axis

• Graphical representation of the P3 status of a
given codebase targeting a given set of
platforms

• Our position can give us clues about what to
do next

• Bottom Right: one version, not portable

• Target-specific optimizations aim high, but
incur large code divergence (top left)

• Ultimate goal: top right, single source, peak
performance across the board

• It may make sense to aim for practical
thresholds, e.g., 80%

Intel ConfidentialDepartment or Event Name 1420th ECMWF Workshop on HPC in Meteorology 14

General Patterns

• Every change to the codebase can be seen as
a movement in this space, e.g.,

• DSLs and high-level abstractions can enable
good performance on multiple platforms with
relatively little code divergence; but it may be
harder to optimize each platform to the limit

• Lower-level abstractions like SYCL incur more
code divergence than a DSL, but retain high
optimization potential

• If we start from a highly specialized codebase,
we can improve code divergence by
introducing common abstractions, though we
may struggle to maintain the same
performance as we do so

Intel ConfidentialDepartment or Event Name 1520th ECMWF Workshop on HPC in Meteorology 15

Further thoughts

• Abstractions are good for Perf. Portability
• Can exist at several levels

• Especially good if work on implementation
layers is shared/re-used

• Also good if possibilities remain open for
further optimization

• Fortran makes things a bit tricky

• Fewer DSL & Framework choices vs C/C++
or Python; significant incentive to migrate

• AI integration
• Interfaces & Translation layers can help,

though complexity suffers

• Automated translation
• One-time translation (E.g. Intel’s SYCLomatic

CUDA → SYCL tool) may help with porting cost,
But doesn’t really address Code Divergence

• Effect of compile-time translation may depend
on specifics: how much it constrains design
decisions, how difficult to get a well-optimized
result

• Integration: A weather prediction suite has
many pieces with different characteristics

• Complexity of making the right choice for an
integrated result

• “same approach across all pieces” vs. “the right
approach for each piece”?

• All at once, or incrementally?

Intel ConfidentialDepartment or Event Name 1620th ECMWF Workshop on HPC in Meteorology 16

References

• Harrell, Kitson, et al. “Effective Performance Portability”

• Pennycook, Sewall, et al. “Navigating Performance, Portability, & Productivity”

• Sewall, Pennycook, et al. “Interpreting and Visualizing Performance Portability Metrics”

• Pennycook, Sewall, Lee, “Implications of a metric for Performance Portability”

• Code Base Investigator: https://github.com/intel/code-base-investigator

• P3 Analysis Library: https://github.com/intel/p3-analysis-library

https://github.com/intel/code-base-investigator
https://github.com/intel/p3-analysis-library

17Intel ConfidentialDepartment or Event Name 17Intel Confidential

	Slide 1: Performance Portability & Productivity in the Porting of Weather Codes to Heterogeneous Platforms
	Slide 2: Motivation
	Slide 3: Example: starting from FORTRAN
	Slide 4: Kernel Optimization
	Slide 5: Performance Portability & Productivity
	Slide 6: Performance Portability & Productivity
	Slide 7: Preliminary: Performance Efficiency
	Slide 8: Performance Portability
	Slide 9: PP Visualization: Cascade Chart
	Slide 10: Code Divergence
	Slide 11: Code Divergence
	Slide 12: Code Divergence Visualization: Dendrogram
	Slide 13: Putting it Together
	Slide 14: General Patterns
	Slide 15: Further thoughts
	Slide 16: References
	Slide 17

