

MME REP: Climate Data Records and EO data processing in a server-less computing paradigm

Salvatore Pinto, Mike Grant, Fernando Ibanez Data Reprocessing Engineer, EUMETSAT

*ECMWF, 20th ECMWF workshop on high performance computing in meteorology – 13/10/2023* 



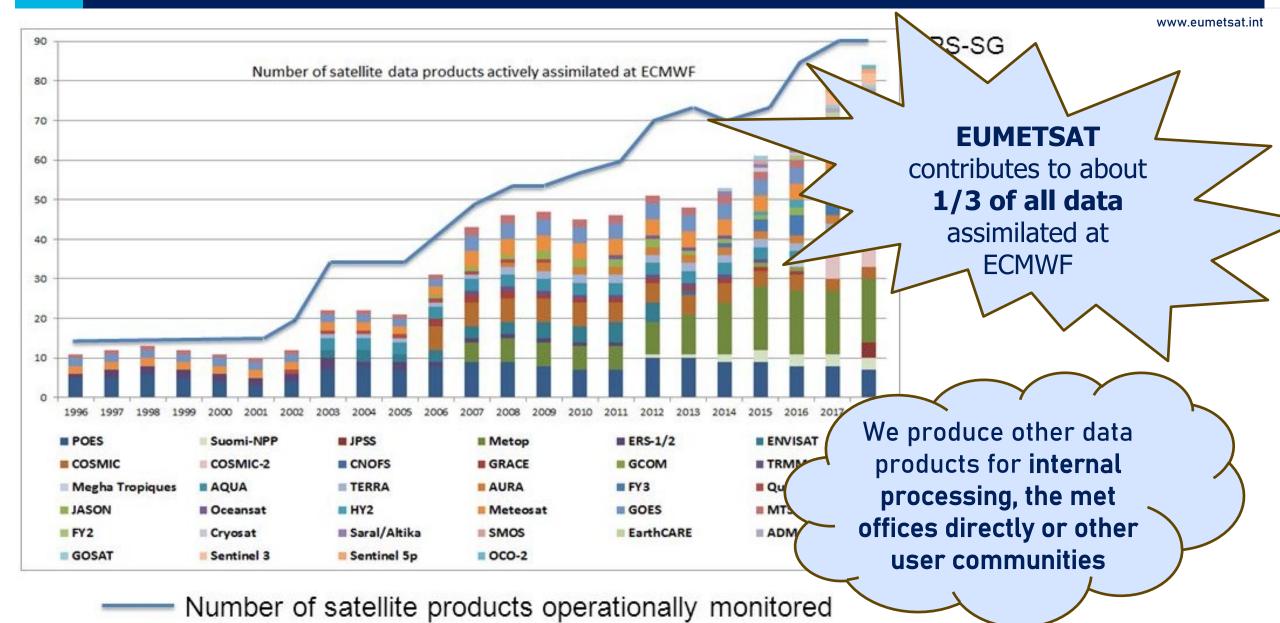


#### The problem

Lots of missions, lots of different mission products + climate data processing, diversity of processors

#### The solution

Transition to serverless computing, cloud and container technologies


#### The system What we have, how it works

# Lots of Satellite missions (producing data to be re/processed)

|                           |                            |      |      |      |      |      |      | www.eumetsat.int |
|---------------------------|----------------------------|------|------|------|------|------|------|------------------|
| MANADATORY PROGRAMME      | SATELLITE                  | 1980 | 1990 | 2020 | 2025 | 2030 | 2035 | 2040             |
| Meteosat Me               | teosat-2 to 7              |      |      | -    |      |      |      |                  |
|                           | Meteosat-8                 |      |      |      |      |      |      |                  |
| Meteosat Second           | Meteosat-9                 |      |      |      |      |      |      |                  |
| Generation (MSG)          | Meteosat-10                |      |      |      |      |      |      |                  |
|                           | Meteosat-11                |      |      |      |      |      |      |                  |
| Meteosat Third            | MTG-I1                     |      |      |      |      |      |      |                  |
| Generation (MTG)          | MTG-S1                     |      |      |      |      |      |      |                  |
|                           | MTG-I2                     |      |      |      |      |      |      |                  |
|                           | MTG-I3                     |      |      |      |      |      |      |                  |
|                           | MTG-S2                     |      |      |      |      |      |      |                  |
|                           | MTG-I4                     |      |      |      |      |      |      |                  |
| EUMETSAT Polar            | Metop-A                    |      |      |      |      |      |      |                  |
| System (EPS)              | Metop-B                    |      |      |      |      |      |      |                  |
| -,,                       | Metop-C                    |      |      |      |      |      |      |                  |
| EUMETSAT Polar            |                            |      |      |      |      |      |      |                  |
| System - Second           | Metop-SGA1                 |      |      |      |      |      |      |                  |
| Generation                | Metop-SGB1                 |      |      |      |      |      |      |                  |
|                           | Metop-SGA2<br>Metop-SGB2   |      |      |      |      |      |      |                  |
| (EPS-SG)                  | Metop-3662                 |      |      |      |      |      |      |                  |
| OPTIONAL AND COPERNICU    | S PROGRAMME                |      |      |      |      |      |      |                  |
| Jason                     | Jason-3                    |      |      |      |      |      |      |                  |
|                           |                            |      |      |      |      |      |      |                  |
| Copernicus                | Sentinel-3A                |      |      |      |      |      |      |                  |
|                           | Sentinel-3B<br>Sentinel-3C |      |      |      |      |      |      |                  |
|                           | Sentinel-3C<br>Sentinel-3D |      |      |      |      |      |      |                  |
| Sontinal 6 M              | lichael Freilich           |      |      |      |      |      |      |                  |
| Sentinet-0 Michaet French |                            |      |      |      |      |      |      |                  |
|                           | Sentinel-6C                |      |      |      |      |      |      |                  |
|                           | Sentinel-6 NG              |      |      |      |      |      |      |                  |
|                           | CRISTAL                    |      |      |      |      |      |      |                  |
|                           | C02M                       |      |      |      |      |      |      |                  |
|                           |                            |      |      |      |      |      |      |                  |

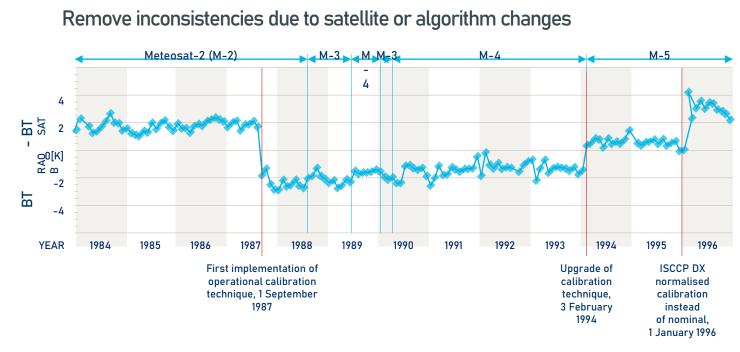
#### EUM/SGS/VWG/23/1381091, v1 Draft, 13 October 2023

## Lots of data products (to be assimilated in NWP and more)

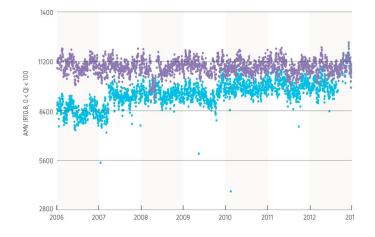


# Processing at EUMETSAT

#### • Near-Real-Time:


- Satellite measurements "as soon as they are acquired"
- Disseminated primary though EUMETcast
- Climate Data Records (this presentation)
  - Processing on the entire archive
  - Disseminated primarily through
     EUMETSAT Data Store




EUMETSAT Data Centre (in the center)

## Climate Data Records – (re)processing full datasets

- Fundamental Climate Data Records (FCDRs), consistent and calibrated time series of "direct" observations, e.g. Meteosat radiances FCDR
- Climate Data Records (CDRs), long timeseries of uncertainty-quantified "derived" values of a geophysical variable or related indicator (e.g. wind vectors)



Improve the quality of products with better algorithms or cleaned-up/reprocessed inputs



Number of reprocessed products extracted from Meteosat imaging with a quality index > 80%, 2005-2013. Reprocessed (purple) has more high-quality products than original (blue).

#### • Each reprocessing produces the complete dataset size again (or more!)

www.eumetsat.int

# Diversity of processors/software (just some examples)

www.eumetsat.int







10–30 processors each



10-15 processors





+ a plethora of "custom" and prototype processors

EUM/SGS/VWG/23/1381091, v1 Draft, 13 October 2023

# Diversity of processing framework and dependencies

www.eumetsat.int kafka . APACHE STORM HCondor workload manager **Batch processing** Streaming, micro-batch ORACLE Custom frameworks and dependencies (developed from scratch or built on top of OSS) Databases (and side Specific OS dependency services)

With some missions, there is a limited to null possibility to adapt or recode the algorithm to run it on a different processing framework

## Our key needs

# **ම Flexibility**

• Several different software approaches needing different processing frameworks (batch, streaming and a lot of custom services)

## Simplicity of use

- most of our processor developers are not fluent with optimization for different platforms and they want to worry "only about the science"
  - it may be "cheaper" to run a bit longer/slower than optimizing the processor

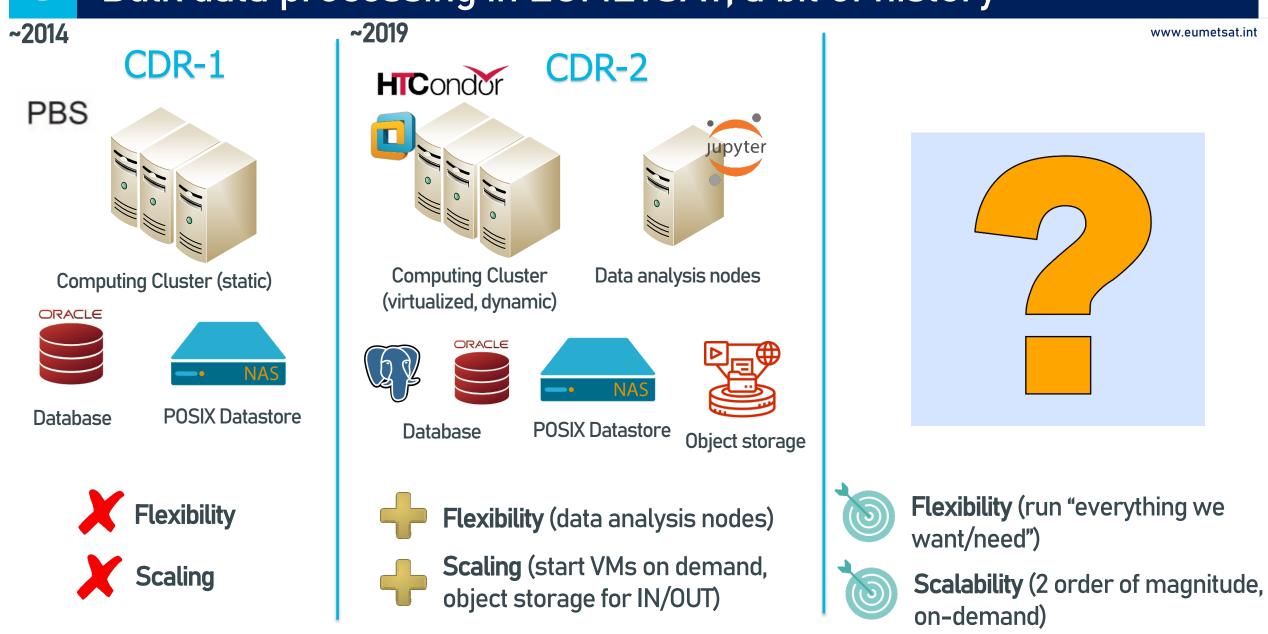
# Performance

- FCDR/CDR complete run (entire archive) in 3 months
  - the maximum still allowing iteration and experimentation in feasible wait times
- no supercomputer numbers, but still a processing cluster in the order of thousands of CPU cores





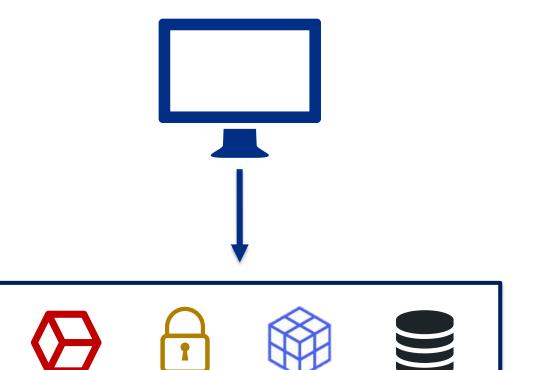
#### The problem


Lots of missions, lots of different mission products + climate data processing, diversity of processors

## The solution

Transition to serverless computing, cloud and container technologies

The system What we have, how it works

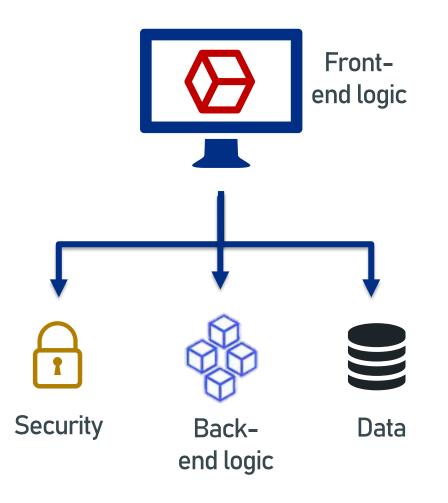

# Bulk data processing in EUMETSAT, a bit of history



## Traditional vs Serverless computing

#### Traditional





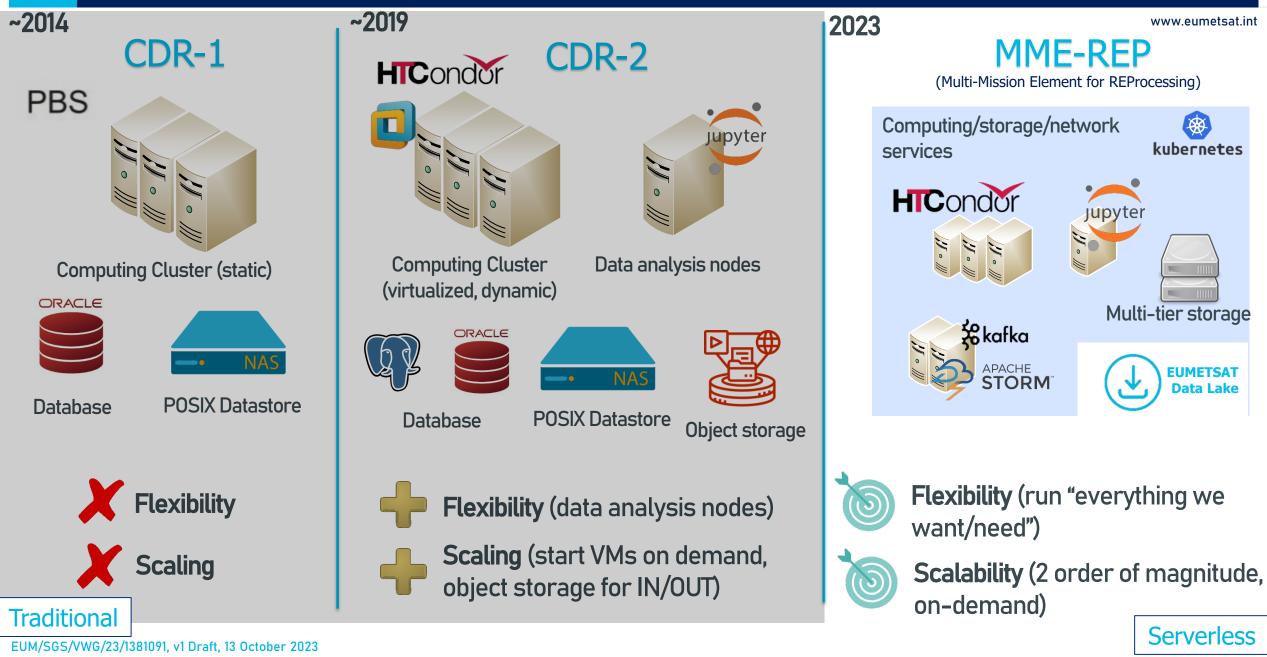

Back-

end logic

Data

# Serverless Client-side logic and thirty-party services




Security

Front-

end logic

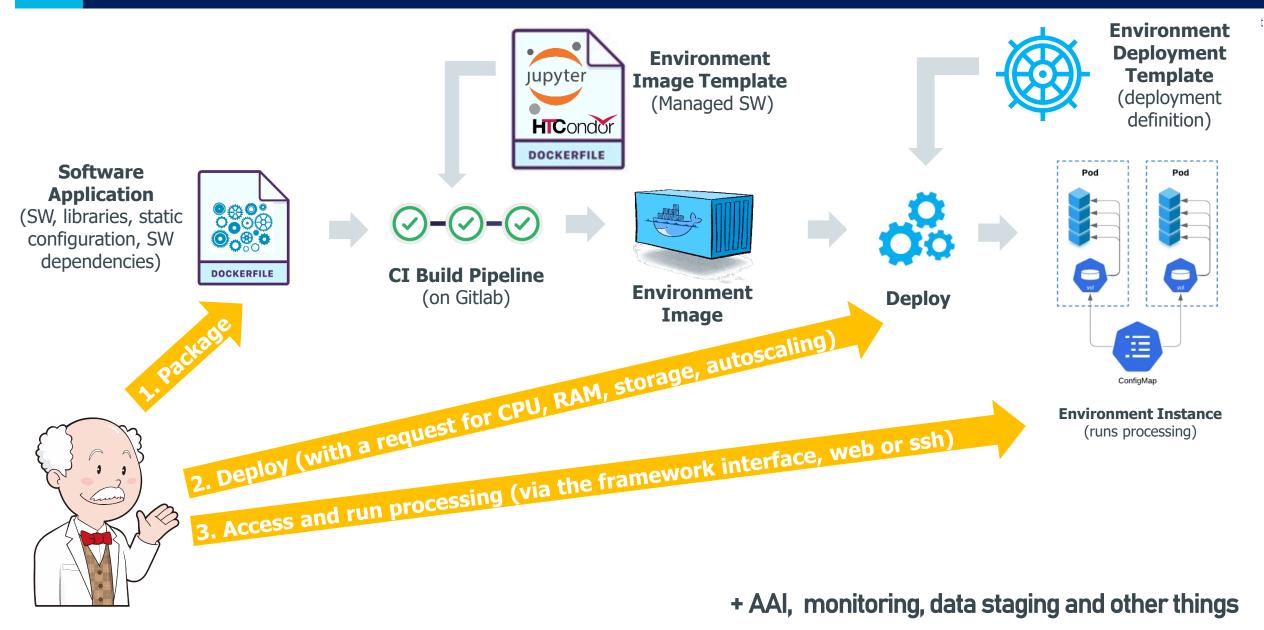
www.eumetsat.int

# Bulk data processing in EUMETSAT, past and present



# MME REP, serverless computing + more

**MME REP** (Multi-Mission Element for REProcessing) is the latest EUMETSAT system for bulk data processing (everything which cannot run on a single PC)


- Based on a Kubernetes infrastructure (& multiple K8S clusters)
  - Designed to scale by 2 orders of magnitude
  - 3 tiers of storage (performance/local -> bulk/shared)
    - + EUMETSAT Data Lake
- Includes tools to ease transition to serverless computing/containers:
  - Automatic package and deployment of applications (simplicity of use)
  - Pre-defined environment image templates (installing general SW)
    - JupyterHub, Interactive, Batch processing with HTCondor, ...
  - Built-in security, automatic scaling, reliability and monitoring

kubernetes

HICondor

Grafana Prometheus

## MME REP, the idea behind

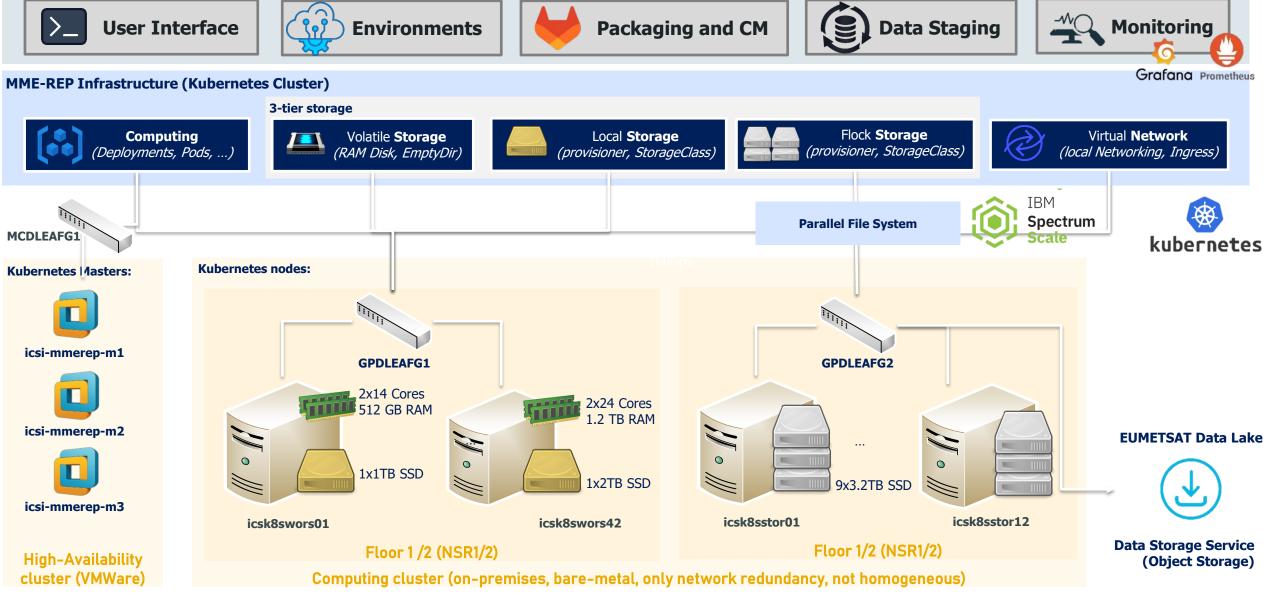






#### The problem

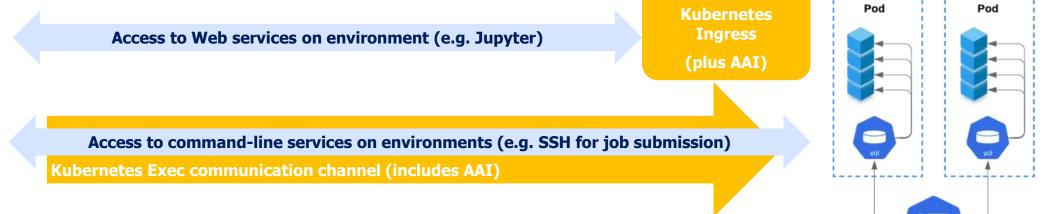
Lots of missions, lots of different mission products + climate data processing, diversity of processors

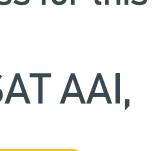

#### The solution

Transition to serverless computing, cloud and container technologies

#### The system What we have, how it works




#### **MME-REP Middleware**




EUM/SGS/VWG/23/1381091, v1 Draft, 13 October 2023

- We do not run containers as "root"
  - Adds complexity in running some daemon-like software
  - We are experimenting on running Kubernetes root-less for this
- User management is done via the shared EUMETSAT AAI, integrated in Kubernetes







EUM/SGS/VWG/23/1381091, v1 Draft, 13 October 2023

ConfigMa

# Constant Series Reliability

## Reprocessing is non-critical, so:

- No redundancy (except K8S core infrastructure)
- No strict availability commitments
  - Computing nodes can be down for scheduled or unscheduled maintenance for weeks
  - Loose requirement of no more than 5 nodes over 100 down for one week
  - NOTE: We do have redundancy for storage and overall network

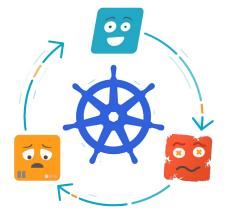
How do we ensure smooth operations then?

Monitoring and (automatic) reaction



## Active/Passive Monitoring




Traditional EUM/SGS/VWG/23/1381091, v1 Draft, 13 October 2023

#### **Kubernetes level**



Software or node HW issue

K8S Crash-Loop-Back-Off



Node restart

# Environment level

MME-REP **monitoring of environments** (e.g. job resource usage, job restarts, job frozen)

> Environment probes



Restart job (from breakpoint)

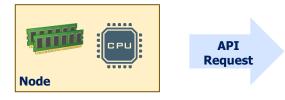
#### www.eumetsat.int

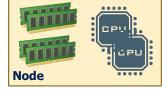
Serverless

#### **Processor level**



Application specific monitoring (eq. quality of output products), defined by the users


App


Logs

# Scaling (is very easy and fast)

## **Environment Level**

• User can scale the nodes (pod) vertically





 Nodes can scale horizontally automatically (e.g. for batch processing environments with full job queues), or manually



# System Level

• Multiple Kubernetes Clusters sharing load



 Elasticity on the cloud (Kubernetes/Rancher can provision new nodes on the cloud)



# An example (from the user of batch processing) (1/3)

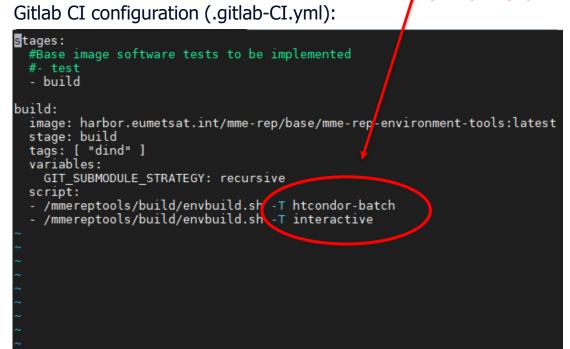
#### Step 1. User push a (Dockerfile) and Gitlab CI configuration (.gitlab-CI.yml):

www.eumetsat.int Build a htcondor-batch

environment and an interactive environment

Processor Application (Dockerfile):

#### ROM centos:7


#Update packages and install basic package requirements RUN yum update -y && yum install -y bash gawk sed python3 sqlite unzip zip rsync git && pip3 install pyyaml && yum clean all && rm -rf /var/cache/yum

#Copy S3 processors (with COTS into a dedicate layer, so that if the COTS stay t he same, we do not need to re-deploy the entire image) COPY s3ipf/cots /usr/local/cots COPY s3ipf/components /usr/local/components COPY s3ipf/conf /usr/local/conf

#Install S3 IPF command-line application (which we need to generate joborders)
COPY ipfcmd /usr/local/ipfcmd

"Dockerfile" 12L, 576C

# Step 2. Automatic pipeline builds the Docker images for the environment



#### ".gitlab-ci.yml" 14L, 356C



# An example (from the user of batch processing) (2/3)

#### Step 3. Deploy environment

Operator deploys htcondor-batch environment using sentinel3 base image version v0.0.1 build in the previous step

#### !\$ ./mme-rep.sh env deploy -F dev-s3 htcondor-batch sentinel3:v0.1.0

|  | Namespace: s3 |                                 |                                                                                                  |            |  |  |  |  |
|--|---------------|---------------------------------|--------------------------------------------------------------------------------------------------|------------|--|--|--|--|
|  | Active        | sentinel3-collector 🚷           | harbor.eumetsat.int/mme-rep/htcondor-batch/se<br>1 Pod / Created a minute ago / Pod Restarts: 0  | <b>i</b>   |  |  |  |  |
|  | Active        | sentinel3-executor 🚷            | harbor.eumetsat.int/mme-rep/htcondor-batch/se<br>2 Pods / Created a minute ago / Pod Restarts: 0 | i          |  |  |  |  |
|  | Active        | sentinel3-scheduler 🚷<br>22/tcp | harbor.eumetsat.int/mme-rep/htcondor-batch/se<br>1 Pod / Created a minute ago / Pod Restarts: 0  | <b>i</b>   |  |  |  |  |
|  | Active        | sentinel3-synclocal 🛞           | harbor.eumetsat.int/mme-rep/htcondor-batch/se<br>0 Pods / Created a minute ago / Pod Restarts: 0 | 1 per node |  |  |  |  |

#### Step 4. Access environment

Environment is deployed and can be accessed via SSH (for batch environments, using kubectl as a ProxyCommand)

#### !\$ ssh sentinel2-scheduler.dev-s3.mmerep-general-dev

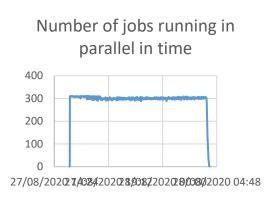
\*If you deployed a web environment, like Jupyter, you would get a web address to connect

#### 

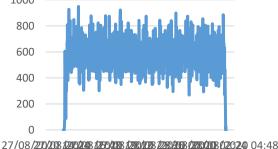
www.eumetsat.int

# An example (from the user of batch processing) (3/3)

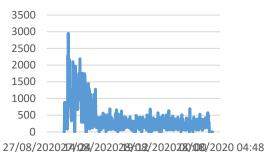
#### Step 6. Scale environment


You can scale environments vertically or horizontally, manually or automatically, from a console or web interface

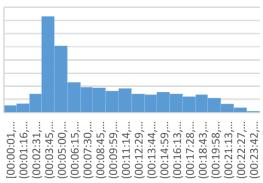
```
[climproc@sentinel3-scheduler-847dc59d-56tpf ~]$ #See the currently assigned resources
[climproc@sentinel3-scheduler-847dc59d-56tpf ~]$ /configs/scaler.sh
Daemon is: off
Cluster size: 2 (0 busy nodes)
Environment size: 2
Nodes are set for:
    Requests: "1" CPU / "10G" RAM
    Max: "" CPU / "" RAM
[climproc@sentinel3-scheduler-847dc59d-56tpf ~]$ #Scale vertically to 2 CPU and 8GB per processing node
[climproc@sentinel3-scheduler-847dc59d-56tpf ~]$ /configs/scaler.sh vscale 2 8G
Scaling deployment vertically to CPU/RAM requests 2/8G and limits / ...
[climproc@sentinel3-scheduler-847dc59d-56tpf ~]$ #Scale horizontally to 310 processing nodes
```


[climproc@sentinel3-scheduler-847dc59d-56tpf ~]\$ /configs/scaler.sh scale 310

Scaling deployment up from 2 to 310...


#### Step 7. Monitor processing




Aggregated upload speed from Data Lake MB/s







#### Job #6353.2 CPU utilisation



#### www.eumetsat.int

EUM/SGS/VWG/23/1381091, v1 Draft, 13 October 2023

- Deploy "anything we want" ( "exotic" dependencies ), when we need it
- Simple for the scientist (whoever wants just a batch cluster can still get it)
  - $\checkmark$  Not so simple for the service provider
- Performance

Summary

- very lean virtualization and limited OS overhead (container vs VM)
- improves I/O demanding applications (most of our SW)
- X we had to write a custom K8S provisioner to fully exploit the local SSD storage
- Cheaper & easier to scale
- scales on anything you can get your hands on (local resources, private/commercial cloud, ...)
   handling finite resource allocation conflicts is not as mature as in a batch processing cluster
   Better control of what's running (Gitlab, Tags, Container images, security scans)
  - Monitoring at deep level allows more reliability and better tuning
    - + Automatic restarts, easier recovery (you can "reinstall" in one click)



# Thank you!

Questions are welcome.

#### Contacts:

Mike Grant – <u>Michael.Grant@eumetsat.int</u> Fernando Ibanez – <u>Fernando.Ibanez@eumetsat.int</u> Salvatore Pinto – <u>Salvatore.Pinto@eumetsat.int</u>