
Code refactoring patterns targeting bandwidth
optimized architectures and heterogeneous
architectures

Jacob Poulsen
20th ECMWF workshop on high performance computing in meteorology

Intel ConfidentialDe partm e nt or Eve nt Nam e 2Data Ce nte r and AI Group 2

EVP overview
EVP is short for the solver for the Elastic -Viscous -Plastic e quations from
E. Hunke @LANL.

This algorithm cons titute s a long acknowle dge d se ve re scaling obs tac le
for se ve ral fore cas t and c lim ate sys te m s

Pre vious e fforts on de aling with this challe nge have not focuse d on the
im ple m e ntation itse lf nor on the utilization of bandwid th-op tim ized
hardware .

The paralle lization re fac toring will take p lace at the core -level, the node -
level and the cluster -level.

The performance study associated with the code refactoring have
focused on Capacity Scaling and Strong Scaling at the node level. The
code refactoring is based on general patterns that can be re -used in other
contexts.

Intel ConfidentialDe partm e nt or Eve nt Nam e 3Data Ce nte r and AI Group 3

Fingerprints
Memory:
• Irregular domain of active points
• Finite difference implying irregular access pattern
• Multiple definitions of active points (U&T cells, two masked grids)

Arithmetic:
• Short latency only (add, mult , div, sqrt)
• Computation intensity ~ 0.3 FLOP/Byte

Parallelization:
• Current hybrid approach based on general 2D blocking with thinning
• Halo swap after each outer iteration so any imbalance will be severely

exposed by this component
• Two different inner iteration spaces

SLOCcount : ~4K (birds -eye view will do for now)

Testcases shared: Forecast and Climate, Winter and Summer

Birds -eye view on the EVP solver
do k = 1, niter ! niter iteration per model timestep
! stage1: use variables on T cells and velocities on U cells to
! define stress* on T cells and stage-interface vectors
do i=1,nt ! nt is number of active T cells at given ts
! FD computations here
...

enddo
! stage2, use variables on U cells and stage-interface
! to define new velocities* and new vars on U cells
do j=1,nu ! nu is number of active U cells at given timestep
! FD computations here
...

enddo
! data dependencies: note that references in stage1 are set in stage2
! halo_swap with MPI neighbours

enddo

Intel ConfidentialDe partm e nt or Eve nt Nam e 4Data Ce nte r and AI Group 4

Refactoring target - Core
Core level:
• Focus on loops and ensure that loops of interest support SIMD code generation

• EVP: 2D data structures -> 1D data-structures, 9 -point stencil via indirect addressing

Intel ConfidentialDe partm e nt or Eve nt Nam e 5Data Ce nte r and AI Group 5

Refactoring – core level (SIMD)
subroutine stress_v0(...,nx,ny,icellt,indxti,...)
! indirect addressing
real (kind=dbl_kind), intent(in), dimension(nx,ny) :: cyp, ...
...
do ij = 1, icellt ! loop over active points

i = indxti(ij) ! lookup 2D orientation
j = indxtj(ij)
! smaller FD-block with column dependencies (i+-1,j+-1)
divune = cyp(i,j)*uvel(i ,j) - dyt(i,j)*uvel(i-1,j) &

+ cxp(i,j)*vvel(i ,j) - dxt(i,j)*vvel(i ,j-1)
...
! larger block with no column dependencies
stressp_1(i,j) = (stressp_1(i,j) + c1ne*(divune - Deltane)) * denom1
...

enddo
end subroutine stress_v0

subroutine stress_v1(...)
! direct addressing (but with gather operations to handle FD)
real (kind=dbl_kind), intent(in), dimension(:), contiguous :: cyp, ...
...
do iw = 1, icellt ! loop over active points

tmp_uvel_ee = uvel(ee(iw)) ! ee(iw) look up neighbour index
...
! smaller FD-block, column dependencies (i+-1,j+-1) via helper index ee, ...
divune = cyp(iw)*uvel(iw) - dyt(iw)*tmp_uvel_ee &

+ cxp(iw)*vvel(iw) - dxt(iw)*tmp_vvel_se
...
! larger block with no column dependencies
stressp_1(iw) = (stressp_1(iw) + c1ne*(divune - Deltane)) * denom1
...

enddo
end subroutine stress_v1

0%

20%

40%

60%

80%

100%

120%

baseline omp-outline omp-spmd omp-inline omp-task fortran-2018

Single core (3rd gen 8360Y) for the same algorithm implemented
via different approaches. Timings are averaged over 10 runs.

(lower is better)

Intel ConfidentialDe partm e nt or Eve nt Nam e 6Data Ce nte r and AI Group 6

Refactoring target - Node
Core level:
• Focus on loops and ensure that loops of interest support SIMD code generation
Node level:
• Review current parallelization pattern
• Focus on the parallelization unit used – improve granularity?

• EVP: Block based granularity -> Point based granularity
• Focus on synchronization points – reduce them? And/Or make them more light weight ?

• EVP: Explicit halo -swap between compute blocks -> OpenMP barrier
• Focus on temporary “stack” arrays (implementation overhead) used to convey results from one section to the next

• EVP: Temporary arrays are already moved to the heap
• Focus on data, movement come at cost (Study the U -cells and the T-cells -> skip iterations in the 3%-4% range)

• EVP: Merge iteration spaces to allow optimal runtime placement and binding, i.e. one decomposition (U ∪ T)
ins te ad of two de com pos it ions (U and T)

We can now use Ope nMP as a s im ple short-hand to code ge ne ration, c f. various op tions in the ne xt coup le of s lide s

Intel ConfidentialDe partm e nt or Eve nt Nam e 7Data Ce nte r and AI Group 7

Refactoring – node level - outline (CPU)
! OpenMP outlined, classical, caller
do k = 1, niter ! niter iteration per model timestep

!$omp parallel do schedule(runtime) private(iw)
do iw = 1,na ! na is union of nt+nu with logical skipT, skipU

call stress(iw,...)
enddo
!$omp end parallel do
!implicit sync via classical openMP semantics
!$omp parallel do schedule(runtime) private(iw)
do iw = 1,na ! na is union of nt+nu with logical skipT, skipU

call stepu(iw,...)
enddo
!$omp end parallel do
!implicit sync via classical openMP semantics

enddo

! OpenMP outlined, classical, callee
subroutine stress (iw,...)

integer (kind=int_kind), intent(in) :: iw
...
if (skipt(iw)) return
! work on active t cell
...
call strain_rates(...)
...
call visc_replpress(...)
...

end subroutine stress

! OpenMP outlined,SPMD, caller
!$omp parallel private(i)
do k = 1, niter ! niter iteration per model timestep

call stress(...)
!$omp barrier ! explicit barrier as this is in parallel section
call stepu(...)
!$omp barrier ! explicit barrier as this is in parallel section

enddo
!$omp end parallel

! OpenMP outlined, SPMD, callee
subroutine stress (...)
integer (kind=int_kind), intent(in) :: na
...
call domp_get_domain(1,na,il,iu) ! domp_get_domain may contain balancing logic

! and return lower and upper for the thread
do iw = il, iu ! il and iu are the individual thread bounds

if (skipt(iw)) cycle
! work on active t cell

enddo
end subroutine stress

Intel ConfidentialDe partm e nt or Eve nt Nam e 8Data Ce nte r and AI Group 8

Refactoring – node level – inline (CPU)
! OpenMP inlined, classical, caller
do k = 1, niter ! niter iteration per model timestep

call stress(na,...)! na is union of nt+nu with logical skipT, skipU
call stepu(na,...) ! na is union of nt+nu with logical skipT, skipU

enddo

! OpenMP inlined, classical, callee
!$omp parallel do schedule(runtime) &
!$omp default(none) &
!$omp private(…) &
!$omp shared(…)
do iw = 1, na

if (skipme(iw)) cycle
...
call strain_rates(...)
...
call visc_replpress(...)
...

enddo
!$omp end parallel do

! OpenMP inlined, classical, caller
do k = 1, niter ! niter iteration per model timestep

call stress(na,...)! na is union of nt+nu with logical skipT, skipU
call stepu(na,...) ! na is union of nt+nu with logical skipT, skipU

enddo

! OpenMP inlined, classical, callee
!$omp parallel single schedule(runtime) &
!$omp taskloop simd &
!$omp default(none) &
!$omp private(…) &
!$omp shared(…)
do iw = 1, na

if (skipme(iw)) cycle
...
call strain_rates(...)
...
call visc_replpress(...)
...

enddo
!$omp end taskloop simd
!$omp end single
!$omp end parallel

Intel ConfidentialDe partm e nt or Eve nt Nam e 9Data Ce nte r and AI Group 99

Refactoring – node level (GPU)
! OpenMP target inlined, caller
!$omp target data map(to: ...)
!$omp map(tofrom: ...)
!$omp target update to(...)
do k = 1, niter

call stress(1,na,...)
! serial so no explicit barrier needed here
call stepu(1,na,...)
! serial so no explicit barrier needed here

enddo
!$omp end target data

! Fortran 2018 (both GPU and CPU), caller
do k = 1, niter
call stress(1,na,...)
! serial so no explicit barrier needed
call stepu(1,na,...)
! serial so no explicit barrier needed

enddo

! OpenMP target outlined, caller
!$omp target data map(to: ...)
!$omp map(tofrom: ...)
!$omp target update to(...)
do k = 1, niter ! niter iteration per model timestep

!$omp target teams distribute parallel do
do iw = 1,na ! na is union of nt+nu

call stress(iw,...)
enddo
!$omp end target teams distribute parallel do
!$omp target teams distribute parallel do
do iw = 1,na ! na is union of nt+nu

call stepu(iw,...)
enddo
!$omp end target teams distribute parallel do

enddo
!$omp end target data

! OpenMP target inlined, callee
subroutine stress (lb,ub,...)

integer (kind=int_kind), intent(in) :: lb, ub
...
!$omp target teams distribute parallel do
do iw = lb, ub

if (skipme(iw)) cycle
! work on active t cell
...
call strain_rates(...)
...
call visc_replpress(...)
...

enddo
!$omp end target teams distribute parallel do

end subroutine stress

! Fortran 2018 (both GPU and CPU), callee
subroutine stress (lb,ub,...)

integer(kind=int_kind), intent(in) :: lb, ub
...
do concurrent (iw=lb:ub) DEFAULT(NONE) &

SHARED(...) &
LOCAL(...)

if (skipme(iw)) cycle
! work on active t cell
...
call strain_rates(...)
...
call visc_replpress(...)
...

enddo
end subroutine stress

! OpenMP target outlined, callee
subroutine stress (iw,...)

integer (kind=int_kind), intent(in) :: iw
...

!$omp declare target
if (skipme(iw)) return
! work on active t cell
...
call strain_rates(...)
...
call visc_replpress(...)
...

end subroutine stress

Intel ConfidentialDe partm e nt or Eve nt Nam e 10Data Ce nte r and AI Group 10

Performance study
Performance studies across CPU and GPU offerings:

1) Strong scaling, how fast can we run on the node? This work-load is dominated by bandwidth
bound so the scaling will tail off once it become saturated. For DDR-based memory systems the
saturation will happen earlier than for HBM -based memory systems.

2) Weak scaling, focus on the special case of weak scaling called capacity scaling. With Capacity
scaling the code is not required to scale beyond the unit for each ensemble, so all w eak scaling
challenges are on the HW and SW stack and not on a mix of the application itself and the HW and
SW stack.

3) Simple roofline to quantify sustained performance using a CPU/GPU centric metric for easier
interpretation of results and to ensure that our baselines for computing improvement factors are
always running at “peak” performance.

4) Performance/watt – we will also normalize results according to the watts required.

Method: All performance numbers reported are the average time obtained when repeating the
test 10x times. All timings are obtained using omp_get_wtime () .

Definition for capacity measurements: An ensemble of 8 ensemble members is running the same
workload simultaneously across NUMA domains or half tiles. The timing of an ensemble run is the
time of the slowest ensemble member. We have repeated the ensemble runs 10 times and report
the average over these 10 times .

For the GPU results, it is only the compute part that is reported (the kernel is a single model time -
step so most traffic in the kernel is one -time initialization traffic). Moreover, the watts
measurements on the GPU results are for the GPU device plus the host device.

Reproducible results: All results are obtained using open standards and freely available compilers
(OneAPI). All the source code is made available via the github repository:
https://github.com/dmidk/CICE -kernel

0

1

2

3

4

5

 1/8 1/2 1/1N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

S trong scaling across 3 node type s

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Single ensemble running ALONE
on 1/8 of the Compute Unit

8 ensembles running
SIMULTANEOUSLY on 8/8 of the

Compute UnitN
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Im pe rfe c t we ak/capac ity scaling

0
0.2
0.4
0.6
0.8

1
1.2

Single ensemble running ALONE
on 1/8 of the Compute Unit

8 ensembles running
SIMULTANEOUSLY on 8/8 of the

Compute UnitN
or

m
al

iz
ed

 p
er

fo
rm

an
ce

P e rfe c t we ak/capac ity scaling

BW saturate d ,
pe rform ance
conve rge nceS tronge r core s More BW to g ive

Intel ConfidentialDe partm e nt or Eve nt Nam e 11Data Ce nte r and AI Group 11

CPU performance

1.0
1.5

5.2

1.0

1.8

4.8

1.0

1.8

4.8

0.0

1.0

2.0

3.0

4.0

5.0

6.0

3rd gen 8360y 4th gen 8480 CPU Max Series 9480

Im
pr

ov
em

en
t

Norm alize d pe rform ance im prove m e nt of EVP vs . S tre am Triad
(highe r is be tte r)

Stream Triad [Gb/s] Strong [s] Weak/Capacity [s]

0%

20%

40%

60%

80%

100%

120%

Stream Triad [Gb/s] Strong [Gb/s] Weak/Capacity [Gb/s]

Roofline m ode l - S us taine d pe rform ance of EVP [Gb/s]
(10 0 % is s tre am triad bandwidth pe rform ance)

3rd gen 8360y 4th gen 8480 CPU Max Series 9480

1.0 1.0 1.0 1.0
1.8 1.8 1.8 2 .0

4 .8
5 .4

4 .8

6 .1

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Strong [s] Strong [watt] Weak/Capacity [s] Weak/Capacity [watt]

Im
pr

ov
em

en
t

Norm alize d pe rform ance im prove m e nt of EVP
(highe r is be tte r)

3rd gen 8360y 4th gen 8480 CPU Max Series 9480

1.0 1.0 1.0 1.0

2 .7
3 .1

2 .6
3 .1

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Strong [s] Strong [watt] Capacity [s] Capacity [watt]

Im
pr

ov
em

en
t

Norm alize d pe rform ance im prove m e nt of EVP, DDR5 vs . HBM
(highe r is be tte r)

4th gen 8480 CPU Max Series 9480

Intel ConfidentialDe partm e nt or Eve nt Nam e 12Data Ce nte r and AI Group 12

CPU vs. GPU performance

0%

20%

40%

60%

80%

100%

120%

3rd gen 8360y 4th gen 8480 CPU Max Series 9480 GPU Max Series 1550

Roofline model - Sustained performance of EVP [Gb/s]
(100% is stream triad bandwidth performance)

Stream Triad [Gb/s] Strong [Gb/s] Weak/Capacity [Gb/s]

Uses implicit scaling across the 2 tiles

8 tasks on 2 devices (two MPI -tasks per tile).

1.0
1.8

4.8

6.0

1.0
1.8

5.4

7.9

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

3rd gen 8360y 4th gen 8480 CPU Max Series 9480 GPU Max Series 1550

Im
pr

ov
em

en
t

Normalized performance improvement of EVP - strong
(higher is better)

Strong [s] Strong [watt]

1.0
1.8

4.8

12.7

1.0
2.0

6.1

9.1

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

3rd gen 8360y 4th gen 8480 CPU Max Series 9480 2xGPU Max Series 1550

Im
pr

ov
em

en
t

Normalized improvement of EVP - weak/capacity
(higher is better)

Weak/Capacity [s] Weak/Capacity [watt]

Intel ConfidentialDe partm e nt or Eve nt Nam e 13Data Ce nte r and AI Group 13

Refactoring target - Cluster
Core level:
• Focus on loops and ensure that loops of interest support SIMD code generation

Node level:
• Review current parallelization pattern
• Focus on the parallelization unit used – can we make it more fine grained ?
• Focus on synchronization points – can we reduce them, can we make them more light weight ?
• Focus on temporary “stack” arrays (implementation overhead) used to convey results from one

section to the next

Cluster level:
• See first three items for the Node level

Intel ConfidentialDe partm e nt or Eve nt Nam e 14Data Ce nte r and AI Group 14

Refactoring - cluster level
The core and node refactoring have given us decent node performance but is there also something
to refactor at the cluster level? Two opportunities to consider:

1. MPI neighborhood collectives
2. An MPMD hook for the EVP allowing instant support of heterogeneous architectures

The EVP algorithm is a posterchild for the MPMD pattern in the sense that it both have unmet
performance requirements in current parallelization and it poses a severe bottleneck to the overall
scaling of the whole model system.

This is WIP (analysis) as the current refactoring is being integrated upstream. Once the node part has
been fully integrated upstream then we plan to continue with the MPMD hook for EVP.

Intel ConfidentialDe partm e nt or Eve nt Nam e 15Data Ce nte r and AI Group 15

Conclusions
• OpenMP can be used to easily express the parallelism in your code and can easily target both CPUs and GPUs. Good

performance is achievable with OpenMP on all architectures assuming the existence of parallelism and that we
carefully adjust our runtime environment.

• Code refactoring can give huge performance gains and does not have to be extremely invasive.

• Roofline modelling based on stream triad seem to be too simplistic for some of the emerging memory technologies
• How many flops can we stuff into a stream -triad (with AI=0.08) before BW utilization drops below say 1.7Tb/s
• READ/WRITE ratio is in the 4:1 range for EVP.
• READ/SIMD GATHER is in the 5:1 range for EVP
• How many percent of the READs can be SIMD GATHER before BW utilization drops below say 1.7Tb/s

• SIMD GATHER amounts to 12% vs. 19% of the READ operations in stage1 and stage2, respectively

• Architectural design using sub -units pose performance challenges to the SW developers that one need to take into
account to achieve good performance on these architectures. Proper mapping (placement+binding) and overall
proper runtime environment is vital to achieve good performance for strong scaling across multiple sub -units.

• The freely available oneAPI compiler from Intel allow you to build and run all the refactoring samples across multi
architectures. Go play and please reach out if you have any questions.

Intel ConfidentialDe partm e nt or Eve nt Nam e 16Data Ce nte r and AI Group 16

Thanks to
• CICE community: Elizabeth C. Hunke, Till S. Rasmussen, Mads H. Ribergaard, Anthony P. Craig
• Intel: Ruchira Sasanka, Chris Dahnken, Mikko Byckling, Carsten Uphoff, Ben Hoertz , Tim Mefford, Mike Greenfield,

Kristina Kermanshahche

	Code refactoring patterns targeting bandwidth optimized architectures and heterogeneous architectures
	EVP overview
	Fingerprints
	Refactoring target - Core
	Refactoring – core level (SIMD)
	Refactoring target - Node
	Refactoring – node level - outline (CPU)
	Refactoring – node level – inline (CPU)
	Slide Number 9
	Performance study
	CPU performance
	CPU vs. GPU performance
	Refactoring target - Cluster
	Refactoring - cluster level
	Conclusions
	Thanks to
	Slide Number 17

