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Challenges for Forecasting

Atmospheric phenomena
occur at many scales
Training datasets limited in
scope

Computational power limits
grid resolution and thus
resolvable processes
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Motivation %M"ﬂ

e Weather impacts nearly every facet of daily life

o Hence, accurate weather prediction is imperative. But it's a challenging problem.

e As aresult, agencies such as NASA, NOAA, ESA, and ECMWEF gather terabytes of
observations everyday

e Data volume >>> insights

Objective

Design a foundation model for atmospheric prediction and analysis Weather

Foundation

Overview Models Analysis Use-case Outreach Reference



Dataset

MERRA2 &

Global | 1980-2023
Spatial Res: 0.5°x0.625°
Temporal Res.: 3 hour

ERAS &)

Global | 1940 - 2023
Spatial Res.: 0.25°x0.25°
Temporal Res.: 1 hour

HRRR Wiy’

CONUS | 2017-2023
Spatial Res.: 3x3 km
Temporal Res.: 1 hour

MERRA2: 11.2TB+ | ERAS: 145 TB+ | HRRR: 6 TB+

Interagency Implementation
and Advanced Concepts Team

Pressure Level Variables

ETA levels: 985 925 850 700
600 525 412 245 150 109 48
hPa

U - Wind speed/direction
V - Wind speed/direction
OMEGA - Vertical motions
T - Air temperature
QV - Specific humidity
PL - Actual mid-level
pressure
H - Mid-layer height
CLOUD - Cloud fraction
Ql - Cloud Ice mass
fraction QL - Cloud water

K mass fraction

N

Surface Variables

U10-10 m u wind
V10 - 10 m v wind
T2M - 2 m air temperature
QV2M - 2m specific
humidity
PS - Surface pressure
SLP - Sea Level pressure
TS - Skin temperature
TQI - Column-total ice
TQL - Column-total liquid
TQV - Column-total water
vapor
PHIS - Surface
geopotential height
FRLAND - Fraction of land

J

<

Y
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~

Other Surface Variables

GWETROOT - Soil Moisture
LAI - Leaf area index
EFLUX - Latent heat flux
HFLUX - sensible heat flux
PRECTOTCORR - precip
Z0M - Surface roughness
LWGEM - LW radiation
LWGAB - LW radiation
absorbed
LWTUP - upward LW at
TOA
SWGNT - net downward
SW SWTNT - net SW at
TOA

/
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Modeling - Brief History of Time

NWP Models

1958 -

2019

MetNet - Google
Research

F1 score<0.3
(8-hour precipitation
forecast)

2020

DLWP
RMSE (Z500) < 110 m
(~12-day forecast)

2021

-
FourcastNet - nVIDIA
ACC (Z500) > 0.7

L (7-day forecast)

AN

P
Pangu - Huawei
RMSE (Z500) < 50 m

MetNet 2 - Google
Research

CSI>0.2

(12-hour precipitation
forecast)

L (7-day forecast)

2022

Graph Weather
RMSE (Z500) < 50 m
(6-day forecast)

IMPACT

Interagency Implementation
and Advanced Concepts Team

Error (1)

Coefficient (1)

RMSE - Root Mean Square
ACC - Anomaly Correlation

CSlI - Critical Success Index (1)

2023

e N
GraphCast - DeepMind

RMSE (Z500) < 60 m

(8-day forecast)
N J
-

Climax - Microsoft

RMSE (Z500) < 100 m
L (7-day forecast) )

A

Dataset

Operational data-driven, ML-based models

A 4
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FourCastNet (Pathak, J. et. al., 2022) %Mmﬂ

t+1 T _t+2 l

. o

Longitudes

L]

AFNO
Model

[}
Q
T
=}
E
@
-

s
:

21
channels

uloMm

V10M
T2M
SLP

t

MLP Llnear Decoder
8 1 1

Channel Mixing

Spatial Mixing
1
g]

[ Patch and Position Embeddin,
" ( J-
- v
d .ﬂ E.—-"*‘ g g E=

Training Architecture

Ground Truth

Ground Truth
(t+1) LOSS I (t+2)
U500

Modified Loss

2 22 Pr(lon lat, lev) — P(lon lat, lev, - £ + 100)

Jt:t+100,lat,lon,lev -

Multiply
MLP|—=S,(.) = Frequency

(Mo X Mot X Moy X 100) — 1 Design based on AFNO model design [1, 2]

6
Pp;
Loss:cos(ZMSE (PTZ-— = ) )
T1:44100 lat,lon,lev

icl




ERAS5 trained model MERRA2 trained model
IMPACT
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Fig. Track (location of minimum sea level pressure) and intensity (minimum sea level

pressure) for Hurricane Michael (2018) from the ERA5 trained model and MERRA2 Soatial distribution of wind q ¢

trained model. Track and intensity are overlapped from the WRF model track, simulated ~ SPatial distribution of wind speed (m/s) for
i . Hurricane Michael (2018)

on 50 km spatial resolution.
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GraphCast (Lam,R. et. al., 2022) %MI’M:T

Message Passing Graph Neural Network

e Multiple mesh resolution

Roll out a forecast

e e

Qutreach Reference



Model predictions of temperature for Model predictions of 2m_temperature IMPRCT
20230731206 at 150 hPa (~8 km) using MERRA2 using ERAS

and Advanced Concepts Team

Targets
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Spherical Fourier Neural
Operator (Bonev, B. et. al., 2023)

Dataset: Trained on MERRA?2 dataset taking U500, V500, and Z500
to see if model is able to learn dynamics and solve PDE like shallow
water equation. Trained over 7 months, predicted over 1 month.

— WF —— Ry — [FL

u MLP —%— o/

Fourier layer

Key Takeaways:
1. Model is able to learn the dynamics related to spherical geometry.
2. Can be used to train the model to make it resolution invariant by mapping u(x) :a v(x)
3. Implementation with transformer can help in containing the manifold related information.

Analysis Use-case Outreach Reference




U500 Target 2022-12-01 01:30:00 U500 Prediction 2022-12-01 01:30:00

Clifford Fourier Neural Operator

Dataset: Trained on MERRA2 dataset taking U500, V500,
and Z500 to see if the model can learn dynamics and solve
PDEs like shallow water equation. Trained over 7 months,
predicted over 1 month.

Implementation:
1. Defining 2 basis vector e,, e, and 1 multi-vector e;e,

2. Take input multivector and create a dual function given by:
a=ay+ae +ae,+aee,
(ag+ ayoiy) + €; (a1t+asiy)
Spinor Vector

3. Perform Clifford Fourier transform on each part and revert back and concatenate both

Key Takeaways:

Model is able to learn the dynamics related to geometry.

2. Can be used to train the model to make it resolution invariant by mapping u(x) : a v(x)

3.  Model computation may grow as we will need to perform FFT on vector and spinor part.
4. Implementation with transformer can help in efficiently mixing tokens.

Overview BEIERISE Analysis Use-case Outreach
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What and Why ,,7
9

FourCastNet
e Optimised — less computation
e Can not handle multiple resolution of
different models
e Super-resolution (same physics)
e Long term forecast will lead to noise over
poles

Swin Transformer-Based Spatio-
Temporal Mapping
e Higher complexity

e Learning physics uncertain
e Good for observing small scale spatial changes

Interagency Implementation
and Advanced Concepts Team

GraphCast

Lower complexity

Message passing network shows PDEs
solution over meshes

Inferences would be easy — needs GPU to
fit graph

Can handle multiple resolution

Early stage concepts for multiple
downstream applications

Overview Models Analysis Use-case Outreach Referenc



IMPACT
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Operator Diffusion Enhanced Neural Network Transformer
ODE-NET

auto-regressive

interpolation
A /
Patchfy + Relative Hierarchical Hierarchical Patchfy -
ERA-5 e De- d N
" MERRA subsample Positional Sparse Sparse ContConv ;2;:: Hgllhl.:rels
i i i oba
HRRR ContConv Encoding Attention (HSA Attention (HSA (CNO) HRRR V¥t fon,T)
- Encoder Decoder

Qutreach Reference



Aviation Turbulence Prediction

Objective Spatial Scale | Temporal Scale

Predict areas where an aircraft could potentially encounter turbulence | Local Hour-Minute

Flight Levels

Airports Overlayed on Density Map

of PIREPs with Turbulence 2010-2020 .
S N G W 3 =t 2
. g R TRA R TR S U l TURBULENCE LEVELS

5
Percentage

30,000+ 20,000-20,999 100-19,999 other.

Flight Level (feet) clearsir [Jp.ozs

o : ""‘ g Fig: Histogram of the turbulence reports with the elevation 2 severs | 0.42%
:.% . + f‘n___;_ 2 Moderate sovere | 0.11%
ik, = 2
E 5 Light Moderate -
0 m o 1000 xacmensrs. -
o
- . 0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00%
PERCENTAGE
Fig: Illlustration of PiREPs overlaid over the airport locations across the US Fig: Categorization of turbulence levels based on occurence

GSP UA /OV GSP/TM 1435/FLUNKN/TP B737/SK BKN®21-TOP826/RM DURD RY22 GSP
BNA UA /OV BNA360@30/TM 1417/FL368/TP BCS3/TB CONS LGT OCNL MOD 36©/RM ZME

Fig: Sample pilot report

Input: Single MERRA 2 time step
Impact: Turbulence is hazard for commercial flights Temporal Extent: 2003 - Present Output: Turbulence risk/likelihood
Challenges: Data is unstandardised, reports are subjective Spatial Extent: United States Source of the labels: PIREPS database




Hurricane Intensity and Track Estimation

Task Objective Spatial Scale Temporal Scale
Curating Hurricane observed / raw Fine-tune FM using the observed hurricane track Regional Days-Weeks
data from Hurdat / JTWC and intensity to improve forecast
North Atlantic Hurricane counts by categories North Atlantic Hurricane counts by years
2022 ATLANTIC HURRICANE SEASON 30
e " .25
LR cats 3 220
Cat4 E E
2 33: 10
40°N
Cat3 s
° TS/TD Catl Cat2 Cat3 Cat4 Cat5 ° 1980 1990 2000 2010 2020
Hurricane Category Years
30°N Cat 2
East Pacific Hurricane counts by categories East Pacific Hurricane counts by years
Catl %
20°N £ 250 2
TS § 200 E 20
§ 150 § 5
R0 ™ 2 100 310
R W) Y 5
100°W 80°wW 60°W 40°W 0 0
TS/TD Catl Cat2 Cat3 Cat4 Cat5 1980 1990 2000 2010 2020
Fig: Visualization of 2022 Atlantic hurricane season Hurricane Category Years
Fig: Histogram of hurricane counts with Fig: Frequency of North Atlantic and East Pacific
category Hurricanes since 1980
Impact: Enhanced hurricane forecasting Input: Time series of 3 hourly MERRA 2 variables
Reduce economic and human loss Temporal Extent: 1850 - 2022 Output: Hurricane center, intensity and size
Challenges: Dynamic problem to solve Spatial Extent: Global - separate for each basins Source of the labels: HURDAT

Use-case Qutreach Reference



Drought Prediction

Objective Spatial Scale | Temporal Scale
Classify droughts into the classes: Regional Days-Seasonal
1. No drought
2. Dry
3. Moderate
4. Severe
5. Exceptional
U.S. Drought Monitor @, (T8 USDA Heat map for MOD or greater drought w;;;s Drought Pixels 3‘9”4‘3‘35 Drought Pixels
I - Years 2000 - 2009 10 0o 10
s00
350
0.8 0.8
400 300
> 0.6 250 2 0.6
£ 300 e 2 g
§ % 5 200 %
200 & 04 150 & 04
100
100 02 02
s0
o 0.0 o 0.0
] 1 2 3 4 5 o 1 2 3 4 5 0 1 2 3 4 5 o 1 2 3 4 5
. e ———— Drought Drought Drought Drought
U:5: Drought Monlhor Fig: Histogram of (left) weeks with drought by category Fig: Histogram of (left) Days with at least class 5 drought
- - . ” (right) Drought frequency by pixel for small for 2000-2009  (right) Drought frequency by pixel for weeks with at least
Sources) NOMC, NOA, USDA 0 20 30 40 50 60 70 80

Data Valid: 09/12/23

Fig: U.S. Drought Monitor drought assessment

Probability per Day (%)
Fig: Heat map representing moderate drought

class 5 drought for 2000-2009.

for the week of Sept. 12th, 2023 over the years 2000-09

Temporal Extent: Weekly between 2000 - present
Spatial Extent. CONUS

Input: Time series of MERRA 2

Output: Drought monitor style drought assessment
Source of the labels: U.S. Drought Monitor

Impact: Precise resource allocation and water management
Mitigation of agricultural losses and economic impacts
Challenges: Severe class imbalance.

Reference



Generating Natural Language Weather Forecast Discussions

Objective

Spatial Scale

Temporal Scale

Creating weather forecast discussions based
on weather modeling results

Local-Regional

Hours-Days

SPC AC 010538 Day 1 Convective Outlook NWS Storm
Prediction Center Norman OK 1138 PM CST Sat Dec
31 2022 valid 011200z - 021200Z ...NO SEVERE
THUNDERSTORM AREAS FORECAST... . .SUMMARY. .
Severe thunderstorms are not expected on Sunday.
..Southwestern US... Southern CA upper trough
is forecast to advance into the lower CO River
Valley by early afternoon before shifting into
eastern AZ by 02/00z. This progression is
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Fig: Word cloud representing
the occurrence of the words

in the report

associated with an 80+kt 500mb speed max that
should translate southeast along the AZ/Sonora
border during the latter half of the period.
Cold mid-level temperatures (-20 to -24C at
500mb) will spread across much of the
southwestern US north of the jet, resulting in
steepening lapse rates and adequate buoyancy for
deep convection. Latest model guidance suggests
greatest PW values will remain south of the
international border,
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Fig: Sample weather report for 01/01/2023

6

8 10 12 14 16

Impact: Streamlined weather reporting process
Enhanced user engagement and informed decision-making
Challenges: Designing architecture/pipeline for multi-modal model

Fig: Top 10 2-grams of the words occurring in the report
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Fig: Histogram of the
feature distribution of the
sample weather report

tagging performed on the

Fig: Illustration of POS
weather discussion

Temporal Extent: Daily between 2003 - Present

Spatial Extent. CONUS

Input: Time series of 3 hourly MERRA 2 dataset
Output: Weather forecast discussion
Source of the labels: SPC forecast discussions



Weather Analogs (Similarity Search)

Task Objective Spatial Scale Temporal Scale

Weather Analogs Given an atmospheric state, provide a ranked | Regional Decadal
list of similar states from the past for
forecast or research purposes

Input map

e Analog forecasting predicts future
weather by looking for similar conditions
in the past

e Requires rapid search of huge
databases (potentially Petabytes)

e Useful for severe weather outbreaks,
hurricanes, extreme temperature events

Ranked
outputs

Lg -b*\

e Can help scientists rapidly locate Model
. s Fig: Pipeline for performing weather analog search. Example images are geopotential height over the U.K.
Slgnlflcant events from the paSt based on Images located using the Copernicus weather analog search (https://cds.climate.copernicus.eu/analogues/).
current event
Temporal Extent: 3 hourly between 1980 - 2020
Impact: Enhanced weather forecasting accuracy Spatial Extent: Global
Efficient historical data utilization for research and planning Input: Single MERRA 2 timestep
Challenges: Rapidly searching large database, designing appropriate Output: Ranked list of similar scenarios in MERRA 2
distance metric Source of the labels: In-house distance metric

Overview Models Analysis Outreach Referenc
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— EARTHDATA

Help | Advanced OPEN ACCESS FOR OPEN SCIENCE

d I‘<1V > cs > arXiv:2309.10808

Computer Science > Machine Learning ESphostapiewe
[Submitted on 19 Sep 2023 (v1), last revised 20 Sep 2023 (this version, v2)]

Al Foundation Models for Weather and Climate: Applications, Design,
and Implementation

Building an Al Foundation Model for Weather and

Climate
S. Karthik Mukkavilli, Daniel Salles Civitarese, Johannes Schmude, Johannes Jakubik, Anne Jones, Nam
Nguyen, Christopher Phillips, Sujit Roy, Shraddha Singh, Campbell Watson, Raghu Ganti, Hendrik Hamann,

A recent workshop brought together experts from NASA, Oak Ridge National
Udaysankar Nair, Rahul Ramachandran, Kommy Weldemariam

Laboratory (ORNL), IBM Research, NVIDIA, and several universities to develop a
Machine learning and deep learning methods have been widely explored in understanding the chaotic behavior of the plan to create an artificial intelligence foundation model (Al FM) for weather and
atmosphere and furthering weather forecasting. There has been increasing interest from technology companies, climate.

government institutions, and meteorological agencies in building digital twins of the Earth. Recent approaches using
transformers, physics-informed machine learning, and graph neural networks have demonstrated state-of-the-art
performance on relatively narrow spatiotemporal scales and specific tasks. With the recent success of generative
artificial intelligence (Al) using pre-trained transformers for language modeling and vision with prompt engineering

and fine-tuning, we are now moving towards generalizable Al. In particular, we are witnessing the rise of Al Dr. Rahul Ramachandran, NASA IMPACT
foundation models that can perform competitively on multiple domain-specific downstream tasks. Despite this Dr. Tsengdar Lee, NASA Headquarters
progress, we are still in the nascent stages of a generalizable Al model for global Earth system models, regional Sep 26, 2023

climate models, and mesoscale weather models. Here, we review current state-of-the-art Al approaches, primarily
from transformer and operator learning literature in the context of meteorology. We provide our perspective on
criteria for success towards a family of foundation models for nowcasting and forecasting weather and climate

The saying, "If you want to go fast, go alone; if you want to go far, go together,"
perfectly encapsulates the essence of open science and the necessity of collaboration

predictions. We also discuss how such models can perform competitively on downstream tasks such as downscaling in addressing complex issues. In this spirit of open science, a workshop was convened
(super-resolution), identifying conditions conducive to the occurrence of wildfires, and predicting consequential at NASA's Marshall Space Flight Center in Huntsville, Alabama, on September 20 and
meteorological phenomena across various spatiotemporal scales such as hurricanes and atmospheric rivers. In 21, 2023. The workshop brought together members of NASA's Interagency

particular, we examine current Al methodologies and contend they have matured enough to design and implement a Implementation and Advanced Concepts Team (IMPACT), representatives from NASA

weather foundation model.

Headquarters, scientists and engineers specializing in artificial intelligence (Al) model

https://arxiv.ora/pdf/2309.10808.pdf https://www.earthdata.nasa.gov/news/wea
ther-ai-fm-workshop
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