MultIO: A framework for message-driven data routing in high-resolution weather and climate modelling

20th ECMWF Workshop on HPC in Meteorology

Domokos Sármány, Mirco Valentini, Razvan Aguridan, Philipp Geier, James Hawkes, Simon Smart, Tiago Quintino

domokos.sarmany@ecmwf.int

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955648. The JU receives support from the European Union's 2020 Horizon 2020 research and innovation programme and Italy, France, Check Republic, United Kingdom, Greece, Netherlands, Germany, Norway. This project has also received funding from the European Union's Horizon 2020 research and innovation programme through grant agreement 801101.

ECMWF's Forecasting System

Established in 1975, Intergovernmental Organisation

- 23 Member States | 12 Cooperating States
- 450+ staff

24/7 operational service

- Operational NWP 4x HRES+ENS forecasts / day
- Supporting NWS (coupled models) and businesses

Research institution

- Experiments to continuously improve our models
- Reforecasts and Climate Reanalysis

Operate 2 EU Copernicus Services

- Climate Change Service (C3S)
- Atmosphere Monitoring Service (CAMS)
- Support Copernicus Emergency Management Service (CEMS)

Dernicus

Destination Earth

- Operates the DestinE Digital Twin Engine (DTE)
- Operates two Digital Twins

2

Use case 1 – ECMWF's production workflow

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Use case 1 – ECMWF's production workflow

Use case 2 – High-resolution climate simulation

Use case 2 – High-resolution climate simulation

MultIO – high-level view

I/O-server functionality

- Asynchronous
- Aggregate distributed fields
- o C/Fortran API

Processing pipelines

- o In memory
- User-programmable
- Both partial/aggregated fields
- User/pre-defined actions

MultIO – a bit of history

MultIO – Multiplexing I/O

- Simultaneous output to multiple storage
- Ideal way to test novel storage technologies

sinks :
 - type: fdb5
 config: {}
 - type : file

- path : "hammer.grib"
- type : maestro
 config : {}

MultIO – a bit of history

MultIO – Multiplexing I/O

- Simultaneous output to multiple storage
- Ideal way to test novel storage technologies
- Now a single action in the pipelines
- More than just I/O on-the-fly post-processing with multiple pipelines

Message-driven routing decisions

Data payload

- Field data (e.g. array of doubles)
- GRIB2
- Grid partition

Message

- Metadata, a unique description
- Payload

💝 Contract

- Between message and action
- Decisions are based on
 - input message's metadata
 - action's default behaviour
 - action's configuration
- Output message can be
 - same message
 - same payload, new metadata
 - new message
 - no message

Message-driven routing decisions

User-defined actions

- The user in full control by defining the contract
- The user populates the metadata through the multio interface
- The user defines the action's behaviour and implements it (conforming to multio's action interface)

Pre-defined actions (shipped with multio)

- The user need to be aware of the requirements on the metadata
- The user still populates the metadata through the multio interface

Both user-defined and pre-defined actions

 The user need to be aware of metadata injected into the message by previous actions

Pipeline interface

🚨 Fortran/C API

- Metadata is a key-value dictionary
- o Create metadata handle
- o Populate metadata
- Pass metadata + data
- Delete metadata handle

```
type(multio_metadata) :: md
real(kind=real64), dimension(:), allocatable :: values
```

md%new(mio)

```
md%set_string("category", "ocean-2d")
```

```
md%set_int("globalSize", globalSize)
md%set_int("level", level)
md%set_int("step", step)
```

mio%write_field(md, values)

```
md%delete()
```

```
multio_metadata_t* md = nullptr;
double* values;
```

multio_new_metadata(&md, multio_handle);

multio_metadata_set_string(md, "category", "ocean-2d");

```
multio_metadata_set_int(md, "globalSize", globalSize);
multio_metadata_set_int(md, "level", level);
multio_metadata_set_int(md, "step", step);
```

multio_write_field(multio_handle, md, values, sz);

multio_delete_metadata(md);

Pre-defined actions: Select

- Filter on metadata
- Never change the message
- Filter on any keys
- Both 'and' and 'or' supported

Pre-defined actions: MetadataMapping

- Inject additional metadata
- Never change the payload
- Always apply
- Require mapped-from metadata

```
type: metadata-mapping
mapping: '{~}/metadata-mapping/nemo-to-grib.yaml'
```


Pre-defined actions: Statistics

Min/max	
Accumulate	<pre>- type: statistics output-frequency: 10d operations: [average] options: step-frequency: 1 time-step: 3600 use-current-time: true</pre>
Average	
Flux average	
Standard deviation	
🔨 Synoptic means	
Statistics restarts	

Pre-defined actions: Interpolate (re-grid)

- Uses the MIR library internally (github.com/ecmwf/mir)
- Interpolation between supported grids
- Cropping to rectangular domains
- Recent: support (e)ORCA ocean and HEALPix grids

Pre-defined actions: Encode

- Uses eccodes internally (github.com/ecmwf/eccodes)
- o Full GRIB2 support
- Some GRIB1 support (phasing out)

```
- type: encode
grid-type: eORCA1
format: grib
template: '{~}/unstr_avg_fc.tmpl'
```


Pre-defined actions: Sink

MultIO sinks – Multiplexing I/O

- Simultaneous output to multiple storage
- Ideal way to test novel storage technologies
- Now a single action in the pipelines
- More than just I/O on-the-fly postprocessing with multiple pipelines

I/O-server additional interface

mio%open_connections()
mio%write_domain(md, domain_data)
mio%write_mask(md, zmask)
mio%close_connections()

🚨 Additional API for distributed data

- Single API call for server
- Transport-layer abstraction
- Book-keeping for topology
- Local-to-global index mapping
- Land-sea mask information

Usage 1: Ocean re-analysis

Release!

 Version 2.0.1 for ORAS6 for production with NEMOv4 to begin in October/November

🖾 GRIB2 ocean data in MARS

- Many new definitions for ocean
- Support for (e)ORCA grids, curated and stored in atlas-io format (github.com/ecmwf/atlas-orca)

WEMOv4 I/O-server & pipelines

- Compute hourly/daily/monthly statistics
- Aggregation rules for (e)ORCA grids
- Fully integrated in IFS operational toolchain

Usage 1: Ocean re-analysis

W Ocean6 re-analysis current production plans

- 6424 five-day assimilation loops
- 11 ensemble members
- o 300 compute tasks per member
- o 20 I/O tasks per member

Comparison to xios 2.5 (best effort)

NextGEMS multi-year runs

- Coupled to NEMOv3 with no output
- Post-processing pipeline for IFS
- Statistics (monthly means)
- Interpolation (re-gridding)

High-resolution DestinE climate runs

- Two coupled ocean-atmosphere models
 - IFS/NEMOv4
 - IFS/FESOMv2
- I/O-server for both NEMOv4 and FESOMv2
- Uniform output on HEALPix grids
- Integrate output configuration

NextGEMS multi-year runs

- Coupled to NEMOv3 with no output
- Post-processing pipeline for IFS
- Statistics (monthly means)
- Interpolation (re-gridding)

High-resolution DestinE climate runs

- Two coupled ocean-atmosphere models
 - IFS/NEMOv4
 - IFS/FESOMv2
- I/O-server for both NEMOv4 and FESOMv2
- Uniform output on HEALPix grids
- Integrate output configuration

Current work and outlook

ML Model

The IFS

Anticipation of AIFS

- Python interface for multio
- Optimisations for more data to be processed

Further developments for DestinE/operataions

- MultIO as I/O-server for IFS atmosphere and wave
- Re-design GRIB2 encoding
- Support of ERA6
 - Consolidate standard deviation
 - Consolidate synoptic means
 - Statistics checkpointing
- More model-side post-processing (fullpos)

Messages to take home

MultIO has programmable pipelines that allows **processing data closer to the model**, thus alleviating some of the burden on downstream users

MultIO provides an **asynchronous I/O-server** that will be first used in upcoming ECMWF's ocean re-analysis and Climate DT Phase 1 production

ECMWF is refactoring its IFS output and production stack to support on-the-fly product generation and MultIO as an I/O-server

