

Climate, Freshwater & Ocean Science

2023 ECMWF Workshop on HPC in Meteorology

Exploration of public cloud computing by an operational site running the Unified Model – *Jeff Zais, NIWA*

20th ECMWF Workshop on HPC in Meteorology October 2023

... about New Zealand

2 main islands 5 million residents 11 time zones away diverse landscapes

From exa to zetta – and back down to a dose of Kiwi reality

New Zealand observations

- Practicality
- Use our natural advantages
- Exports & imports
- Study & survey the rest of the world, then use their success as a guide
- Playful banter with those across the Tasman Sea

National Institute of Water & Atmospheric Research

- 1992
- 1 of 7
- 13
- 700

Field work under the ice shelf

update from the 2023 Antarctic voyage

O NIWA

A growing number of remote sensing data sources

Baring Head – 50 year record of data

Data on a journey

NIWA deploys and maintains those instruments (Field Teams) in various environments, some very remote (Franz Josef Weather stations, Waitomo Caves, Antarctica, Pacific Islands)

Southern Lopters

Climate, Freshwater & Ocean Science

Rain drops that make their way into one of NIWA's smart rain gauges mark the beginning of a long and involved data journey that snakes through cellular networks, desktop applications, data centres and topof-the-line supercomputers.

... about HPC at NIWA

1976/1977 Antiquated Specifications

- "one million characters per day" of data transfer
- "core (memory) storage requirements 32 K words
- a card reader is required to read at least 200 cpm on standard 80 column cards
- "average execution time for a floating point instruction can be only a few microseconds"
- input/output devices: card reader, buffered line printer, teletypewriter, paper tape punch, paper tape reader, ICC modem

WELLINGTON

1976/1977 Forward Path Specifications

- "reception and filing of selected satellite data in real time"
- "high speed communication link to the World Meteorological OROLOC Centre in Melbourne"
 - "forecast runs will be made four times a day for periods of 12-36 hours ahead"
- 5 YEAR FLAN 15 "A FORTRAN IV compiler is required"
 - Physical data: kVA, BThU/hr, space requirements
 - 30-day reliability test: "no more than 10 instances of unscheduled down time"
 - "duplicate parts of the system to ensure minimal down time"
- "Competent software specialists must be located in New Zealand for telephone consultations"
 - "At present no statistical forecasting programs are operational but they are likely to be used more extensively in the future to predict weather elements and events which can not be done directly from the dynamical forecasting models"

1999

- CRAY T3E-1200
- #89 on the November 1999 TOP500 list
- 144 processors, 0.17 peak teraflops

2010

- IBM p575 POWER6 system
- 700 kilowatts for power & cooling

2017/2018

- Cray XC50, Cray CS400 & CS500, Spectrum Scale
- 400 kilowatts sum; 'Maui' could be #500 in 2019?
- smaller disaster recovery system 'Kupe' in Auckland

... about numerical weather prediction at NIWA – as part of the Unified Model Partnership

The scientific workflow for operational forecasting is very complex – and handled by the Cylc ("silk") Workflow Engine

H. Oliver, et al.,"Workflow Automation for Cycling Systems" in *Computing in Science & Engineering*, vol. 21, no. 04, pp. 7-21, 2019. doi: 10.1109/MCSE.2019.2906593

Combine weather with rainfall data, river flow data, and catchment models

Flood event July 2021 – Buller model

TIMELINE OF EVENTS:

Calibrated flood model developed for West Coast by NIWA in 2016.

Various forecasts running for Buller, Grey, Karamea, Hokitika since 2018.

Wed 14 July 2021 MetService issues red alert (only third ever for NZ) for heavy rainfall event for region.

Thu 15 July WCRC contacts NIWA to provide river forecast information.

Fri 16 July 2021

8am NIWA provides weather briefing to FENZ and river forecasts to WCRC. CDEM and FENZ.

1pm NIWA sends updated river flow and sea level forecasts to CDEM.

1:15pm Buller declares local emergency, voluntary evacuation.

WCRC/CDEM request guidance from NIWA – who advise not to let evacuees return home yet as river still rising. River peaks at 3pm, inundation in Westport

continues until 10pm.

Sat 17 July

Flood Depth (Preliminary low

NIWA inundation map of 2021 event in Westport from postevent survey information.

- Early forecasts tracked well
- 2 out of 3 sites went down

... about my HPC experiences

1977	University of Wisconsin	Fortran, punch cards
1985-1991	Ford Aerospace	CDC7600, Cray-1 user, COS to UniCOS
1991-1999	Cray Research	first vector to RISC (LS-DYNA)
1999-2014	IBM	first RISC to X86 (LS-DYNA)
2014-2019	Lenovo	first Dragonfly Plus (Toronto, Canada)
2019+	NIWA	Fortran (!), HPC refresh 2024-2025

... about the HPC 2025 refresh at NIWA

- March of 2025 is the end of year #7 of the systems installed in 2017, accepted in 2018
- RFP active now, goal is selection/order before the end of 2023
- delivery & enablement 1H 2024, workloads moved during 2H 2024
- focus on "data first"
- both 'hosted' and 'public cloud' approaches welcome
- 1. new archive (primary & secondary)
- 2. new compute & high-performance storage (primary & secondary)
- 3. new hosting location (primary & secondary)

... and about that abstract/title:

Exploration of public cloud computing by an operational site running the Unified Model

"No person ever steps in the same river twice, for it's not the same river and they aren't the same person"

Heraclitus (544-483 B.C.)

NIWA Operational Weather Forecasting

- Based on the Unified Model (UK Met Office)
- Currently 4 operational model configurations
- Ensemble forecasting now in production
- Additional models (e.g., wave and tide forecast)
- Complex workflows with numerous pre- and postprocessing tasks

Recent (and future) growth in compute demand

		forecasting operational workload
	year	WOIKIOau
12 km NZLAM	2018	4,511,400
+4 km NZLAM	2019	6,039,533
no significant adds	2020	6,039,533
+detailed model	2021	7,061,533
+ensemble	2022	15,733,933
no significant adds	2023	15,733,933
next gen	2024	183,421,260
next gen	2025	183,421,260

WA

Is public cloud possible? What do vendors offer?

Service	AWS	Azure	Google	Oracle
Compute	EC2 c5i, hpc6a,	HBv2, HC,	C2, C2D,	BM.HPC2.36
Network	Elastic Fabric Adapter	HDR InfiniBand	Low-latency Ethernet	100 Gb/s RoCl v2
Storage (object + high perf)	S3 and Lustre	Blob, NetApp	Cloud Storage and Lustre	marketplace: BeeGFS, Lustre, GlusterFS,
Configuration	ParallelCluster	CycleCloud	Cloud HPC Toolkit	Terraform

- HPC services also offered by other vendors (HPE, ...)
- Fairly similar concepts across vendors
- Config and provisioning can usually be automated

General impressions – from the proof of concept

- It works 🙂
- Well, for one vendor, it was a bit of a struggle (measured in days) to get a version running. For another, it was just a few hours.
- Performance results are encouraging competitive compute and IO performance, straightforward to use, very similar to on-prem
- Great strong scaling
- Small ssh lag with Australia-East region, workable with US-East region
- Great tools, e.g., AWS cluster CLI or Azure cloud portal
- "DIY HPC" build custom solution in minutes

Challenges and open questions

- Data has gravity, need to choose data centre carefully
- Cost fast storage is expensive
- Move from persistent resource use to ephemeral use lots of scripting, need to educate users (!)
- (Un)availability of compute resources reserve, migrate, ...?
- Tailor HPC solutions to each project? Let some projects share?

Public cloud performance summary

- Encouraging results for this Unified Model forecasting pilot
- Relatively straightforward to use, good tools
- Need to embrace automation and careful data staging
- Storage needs a lot of care what, how, where to transfer and store?

Cost comparisons

- *old thinking:* cloud is more expensive now, but will eventually be lowest because of the advantages high volumes
- *new thinking:* cloud will always be more expensive, but will have certain advantages which are worth the \$\$\$
- many opinions on how *much* more expensive, factors such as 3x, 4x, 7x, 7x, 10x all mentioned
- so many options guidance (internal & external) is really required

Archive solution early cost estimates

- 6 year cost
- 18 petabytes, growing to 150+

Location matters!

- 1.2 = USA
- 1.5 = Singapore
- 2.5 = Australia
- ??? = Auckland

Is operational weather possible in the public cloud?

two approaches have evolved

NIWA Greta Point campus

Thank you

