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ltalia - Deutschland science-4-service
network in weather and climate (IDEA-S4S)

collaborative research framework between Italy and
Germany for advancing weather and climate research

EXPATS

* Research group funded within IDEA-S4S

* Improve understanding of extreme events
& hail by making use of large amounts of
geostationary satellite imagery & advanced
deep learning methods

« EXPATS’ work is based on EWC Infrastructure.
Access via national representative DWD.
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Our main approach

based on Chatterjee et al. (2023)
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Overall work flow

Download | = [V eees S
different kinds P [ ik A
MSG/MTG  MWCC-H EUCLID Radar

of data locally
N_/ radiances + hail lightning composites

CMSAF

pre-processing:

 parallax correction

Post-processing

and further

* matching of different datasets analysis on VM

or local

prepare Train deep learning

data model on GPU

ik - « build time series
B - crop to specific subdomain 4
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BROKEN: low to high cloud
cover, broken clouds structures, <
low level clouds,

CONVECTIVE: broker clouds
with average cloud ¢over,
various cloud top hdights,

deep cores

OVERCAST: high aRd
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Main results: same framework in space for model evaluation
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Main results: Work to identify hail patterns in progress

Supervised model performance vs logistic
Predicted class regression Predicted class

No hail Hail No hail Hail
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supervised CNN on test logistic regression

dataset (unseen data) (linear fit) 7



Data preparation and buckets

MSG

* 10.8 um (future also others 6.2, 3.9)
e 2013-2024, Apr-Sept

* Over Alps (5-16E, 42-52N)

* 0.04° regular grid

Procedure:

* Download from EUMETSAT with data tailor
* Apply parallax correction using CTH

 Crop to our domain
* Upload to EWC data bucket

Feedback:

« MSG In avallable buckets are not corrected for
parallax when made available with radar data.

« Some tutorial scripts for downloading EUMETSAT
products (as it is available for OCA) would be nice

* Downloading MTG - bit difficult



Data preparation and buckets

Collecting other data sources on
buckets for same domain
(subdomains) and time period

Feedback:
ZAPWESOME o

* Great option to store in buckets

« Radar data from DWD and ARPAE * Easy access from all VMs
EUCLID lightning data

Cloud properties derived from
CM-SAF products Our suggestions / thoughts:

« ERA S5
MWCC-H hail probability * Back up of data buckets would Q

be appreciated ol
e Can we make our data buckets
avalilable with associated DOI? _




What future for our buckets?

Good reasons to make our buckets (with our training dataset)
publicly accessible:

* they can be linked to the publications in respect of FAIR

principles
* they can be shared with the community & re-used for training
other models, improving verification chances
* they can be exploited for training students.

Is this a possibility? What options are on the table?
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Additional feedback

* Not too easy to settle in if you're new to it
* Onboarding:
o useful but also overwhelming at beginning
* User support.
o Great!
o Direct contact via Mall or chat
o Quick responses
 Knowledge base webpage:
o |s very appreciated!
o Sometimes bit hard to find what you're looking for
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Evaluating ICON cloud structures using ML

Spherical k-mean
(Hornik et al. 2012)
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Evaluating ICON cloud structures using ML

Spherical k-mean
(Hornik et al. 2012)

. : Ei . pseudo-iabel q,
e S — R — ,
2 - centroid C

Adapt the self-
supervised framework
from Chatterjee et al.

(2023) goal finding main features gosl: reducrg number of goal identify class 1
) features (2abel and centrod)
" - s 2. & é
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I 2 z
yi function

ResNet 50 Multilayer- perceptron p = f(C,Z)
(He et al. 2015)

backpropagation and update of the weaights goal: cptimization of wesghts
and calcutation of
parameter upcato

Assess the impact of
using IR channels,
compared to using cloud
optical thickness.

Cloud mask from
CMSAF is applied to
filter out ground

Channel IR 10.8 micron is
provided from the model

output and data availble also :
signals

during nightime



2D Embedding

10. Deep Clouds
. Low Clouds
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The 128-dimensional feature space Is reduced to 2D using tSNE for visual inspection.



Intra- and inter-class variability

Cloudy Cloud Cover
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0.8 - cluster centroids.
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PhD Paula: Investigation of changes
{»or l\ai[ storms over H\e AlFS




My approach @\

Representation
vector
Convolutional Neural Network . Hall
e.g. ResNet .
Extracts features = No hail

large hail

This was HAIL




Constructing spatiotemporal dataset

Match PMW satellite overpass Crop over overpass / Extend timeseries
with MSG timestamp hail area by previous MSG
R10.8 Tb [K] timestamps
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Dataset for pre-study

No hall

ﬁ 83.3 %

o 2022, Apr-Sep
 Total number of

timeseries: 1244

Examples

20220612 - 11:30 20220708 - 14:00 20220502 - 03:45 20220531 ~17:15

No hall 59.3 %

20220416 - 21:15 20220506 - 04:30
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Daniele’s and my thoughts from before

* Summary on our activities (Sat data, SSL) taken from above talks
o using GPU to train ML models (1 gpu for each VM is not enough!)
o We might need more also for students project work.
o Having personal GPUs Is good In intense work phase, but maybe when not using gpus all the
time is more beneficial to share nodes among different tenants?
« We heavily use buckets to store and share data - this is great! (point to improve, bucket backup!)
* Easily share data VMs belonging to the same provision. Buckets aren’t the best while using data
from ML (data are needed locally)
* Buckets already provide with some sat data (MSG) but the processing is left to the users (e.g.
parallax correction is not there).
* How to deal with data publication when papers are accepted? FAIR principles
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