

Environment and Climate Change Canada Environnement et Changement climatique Canada

Lessons learned from the assimilation of RO in large volumes at ECCC

Prepared: Josep M. Aparicio

Contributions: David Lobon, Ping Du, Normand Gagnon, Alain Beaulne

Included commercial data supplied by

- NOAA (Spire, GeoOptics)
- PlanetlQ

Preamble I

• We present a study adding a large amount of RO Data to the operational base at ECCC (2022)

Objectives at the time were

- Deciding if those sources were technically ready to become operational
- Identify any technical limitations yet unknown
- Overview and quantification of impact
- Basis for decision making

• Summary of results

•

- Some data identified as ready
- Some identified as requiring some review
- Issues with the system were identified, which required some attention
 - Review N vs BA
 - Review PBL
 - Review anchors

These lessons being relevant, we will discuss them here

Page 2 – June 11, 2024

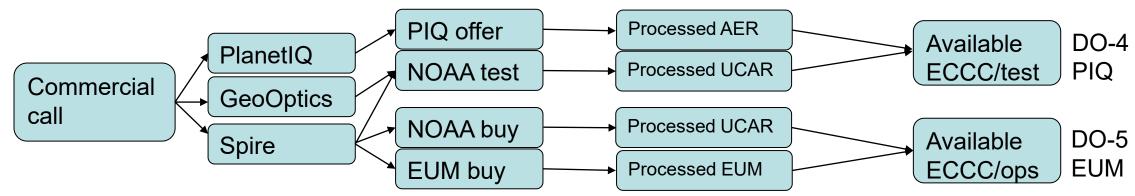
Preamble II Adding 20k prof/day

RO Data that was operational at ECCC in the study period

- METOP-B & C (~1200 prof/day, polar, GPS, rise & set)
- COSMIC-2 (~5000 prof/day, |lat| <~ 40 deg, GPS+GLO, rise & set)
- FY-3D (~500 prof/day, polar, GPS, rise & set)
- KOMPSAT-5 (~300 prof/day, polar, GPS, set)
- TERRASAR-X (~200 prof/day, polar, GPS, set)
- TANDEM-X (~150 prof/day, polar, GPS, rise)
- PAZ (~200 prof/day, polar, GPS, set)
- GRACE-A,B (~500 prof/day, polar, GPS+GLO, 1 rise, 1 set)
- Upcoming at the time (available, waiting final decision)
 - Sentinel-6A (~800 prof/day, polar, GPS+GLO, rise & set)
- Massive addition

•

- Research licenses through NOAA, EUMETSAT, and agreements
 - Spire (~6000 prof/day, polar, GPS+GLO+GAL, set)
 - 6000 from NOAA
 - 1500 from EUMETSAT
 - GeoOptics (about 500 prof/day, polar, GPS+GLO+GAL, NRT irregular delivery)
 - PlanetIQ (about 3300 prof/day, polar, GPS+GLO+GAL+BEI, received offline, direct agreement ECCC/PIQ)
- Spire had even more (not part of this study)


Page 3 – June 11, 2024

Preamble III

License:

- All current operational data are available under **open and free use** policy (standard WMO-40)
- Recent Sentinel-6A also open, free
- Commercial providers: GeoOptics, Spire, PlanetIQ. For tests described here we had only a non-operational test license.

This commercial pool contained ~10000 profiles/day from an existing commercial pool estimated at about 24000 profiles/day, tens of micro/nanosatellites

Page 4 – June 11, 2024

Preamble IV

• **Operational GPSRO data at ECCC at the time** ~ 8500 prof/day

- 2500 polar orbits
- 6000 low incl orbits
- Experiments here
- Estimate existing pool (std+comm)

- ~ 15000 (Spring22) and 19000 (Summer22)
- ~ 32000 prof/day

Page 5 – June 11, 2024

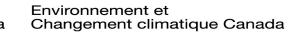
- ECCC uses two base atmospheric systems (then several regional, local, ocean, ice, waves, coastal, hydrologic... here outside the scope)
 - Global Deterministic (filter & QC of obs, provides **OBS** to ensemble)
 - Global Ensemble (background covariance, provides **B-matrix** to deterministic) B-matrix is dynamic, ensemble based
- Thus they are (weakly) **coupled**.
- Tests shown are deterministic-only (stored ensemble). Coupling (B-matrix) was later verified to be small <10% impact.

Page 6 – June 11, 2024

- Deterministic TEST+B from Ensemble OPS
- Deterministic TEST+B from (own) Ensemble TEST

(uncoupled) (coupled)

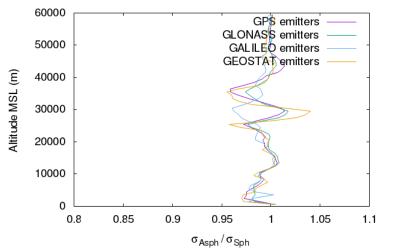
Environment and Climate Change Canada



Preamble for Evaluation

- Large added volumes, potentially leading to impacts that may be *challenging to verify*.
 Affects radiance bias correction.
 - Against-external-analysis: These data were not yet operational at ECMWF. Careful when comparing against ECMWF analysis (otherwise std practice).
 - Against-external-data: We chose
 - RS: To check impact in data-dense regions
 - RO METOP-B&C: To check impact against homogeneous global high-quality reference of the *same kind*
 - ATMS: To check impact against homogeneous global high-quality reference (*different kind, near-nadir*)
 - MLS: (Temperature) Against global limb profiler (*different kind, limb geometry, T not assimilated*)

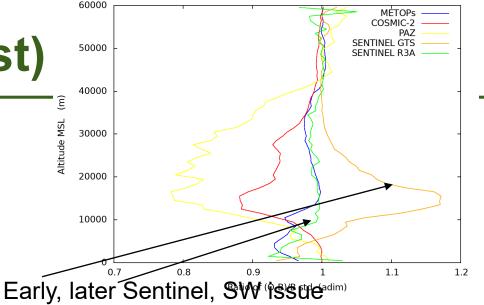
Page 7 – June 11, 2024

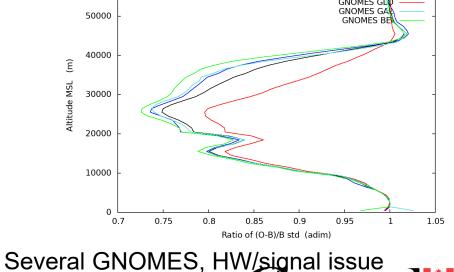


Ratio of (O-B)/B STD, using Tangent Drift (TPD) vs header latlon (<1 improvement)

Threshold to add value (Contrast)

- Do data notice model's skill?
 - Model has very high skill at large scale, progressively less at smaller scales.
 - Data able to discriminate model intermediate value?
 - No value at too large scale, skill too good to improve •
 - No value at too small scale, skill too bad to help
 - **Test intermediate scales (10-100 km)** (use 2 different H(x): the **best** and a slightly **degraded**)
 - Here "best" contains eg TPD, plane rotation, "degraded" does not apply these
 - Preliminary data of most sources often not sensitive
 - UCAR, EUMETSAT software ok.
 - Check if data can identify best vs degraded _
 - Data unable to discriminate intermediate skill, unlikely to add skill. _
 - Example of contrast here, others possible _


Old Spire data (greatly improved in later versions) Sensitivity of Spire data to local horizontal gradients

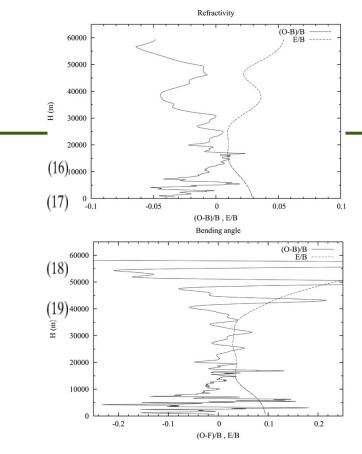

Contrast test heuristically found to be necessary and nearly sufficient

Page 8 – June 11, 2024

Altitude MSL

Environment and **Climate Change Canada**

Environnement et Changement climatique Canada Ratio of (O-B)/B STD, using Tangent Drift (TPD) vs header latlon (<1 improvement)


Some details about RO in ECCC

- Observation used is refractivity ٠
 - Many tests/reimplementations tried: Best performing always refractivity
- Error estimation ٠
 - Dynamic (based on vertically sliding window of O-B). Smaller error if column of O-B small.
 - Self-adjusting.
 - Highly tolerant to temporary glitches, like transient orbit errors _
 - Highly tolerant to different hardware/sources (providers) _
 - Highly tolerant to ECCC system evolution (new models, assimilation systems, vertical and horiz resolution, etc)
- Interesting: ٠
 - Refractivity is naturally "smoothed" (integral produces correlations)
 - O-B naturally narrower in N (\sim 0.5%) than BA (\sim 1%)
 - Most of the impact 300 (hPa)_
 - Refractivity naturally inferior low tropo (below prime RO region) —
 - N also inferior in upper strato (initialization) (above prime region)
 - Prime region not immediately N-inferior

Environment and

Page 9 – June 11, 2024

Environnement et Climate Change Canada Changement climatique Canada

Sliding window

 $\varepsilon_i = z_i B_i$.

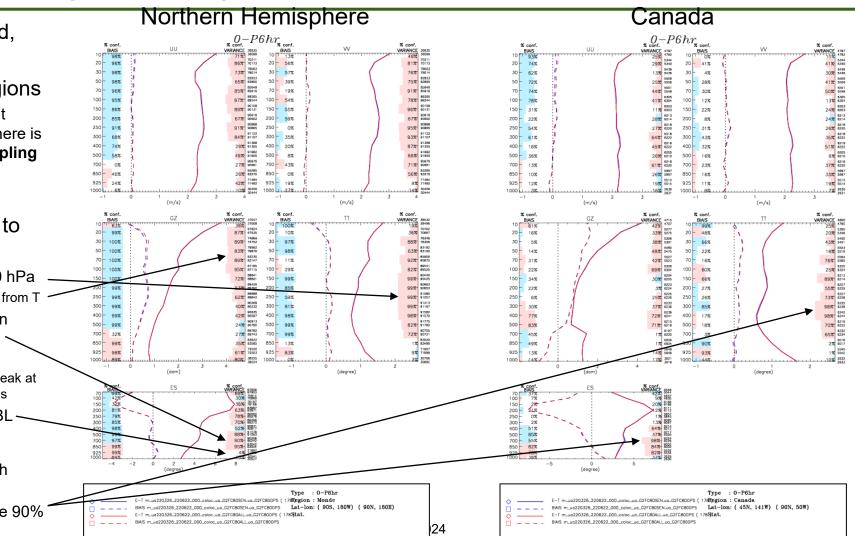
 $w_{ij} = \exp[-(h_i - h_i)^2/H^2],$

Experiments

- NRT:
 - 1 experiment
 - As OPS + Sentinel-6A + (GeoOptics+Spire). Nearly 3 months: 2022032600 to 2022062200 (Spring22)
 - GPSRO data sources:
 - Wait for the creation of each 6h batch of OPS-RO data (derialt).
 - Within **10 min** of OPS-RO creation, close ALL-RO, adding available Sentinel-6A and commercial
 - **Nearly identical latency** cutoff for added data, all operational data strictly identical.
 - Scheduled to run 12h behind Global Deterministic OPS
 - Could have been just 10 min behind
 - Test reliability as NRT source, not just data impact (got well above 99% before G2 cutoff)

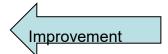
Offline

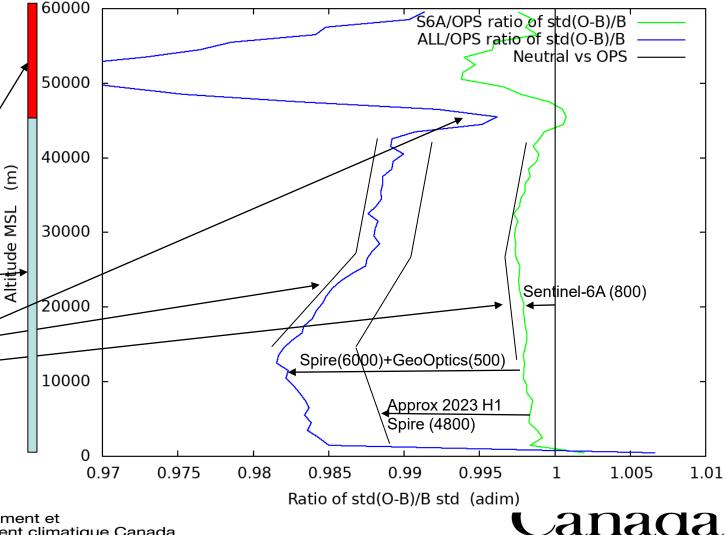
- 2 experiments (Summer22)
 - ALL: As OPS + Sentinel-6A + (GeoOptics+Spire). Additional test 2022061400 to 2022083100
 - COM: As OPS+Sentinel-6A+(GeoOptics+Spire+PlanetIQ). 3.5 months: 2022061400 to 2022093018 (Fiona)
- COM ~20000 profiles/day, more than 2xops, and about 4xops at higher latitudes, 10x early 2020!
 - License was test-only, not for ops
 - Test above expected available (ops-licensed) volume in H1 2023 (~1.5-2x)
 - Useful to check for any form of saturation, anomalous behavior, resource overflow...


Page 10 – June 11, 2024

Environment and Environmement et Climate Change Canada Changement climatique Canada

Verifications I: RS (high data density areas) Spring NRT test (Mar-Jun)


- Thermodynamic, wind, moisture
- High data density regions
 - not exactly global, but interesting to see if there is a benefit when sampling is already dense
- General positive tendency. Two items to note:
 - Peak T impact at 300 hPa
 - GZ impact derives from T
 - Noticeable q impact in upper PBL/ low free troposphere
 - This signature is weak at lower data densities
 - But neutral **below** PBL
- Limited to Canada:
 - Same signatures, with weaker significance
 - Yet, some T, q, above 90%


Environment and Climate Change Canada

Verifications II: RO from METOPs

- Thermodynamic, also RO
- Global sampling, very uniform land/ocean, populated/not.
- Not uniform in latitude: **denser sampling at** high latitudes (7x poles vs equator)
- Not uniform in local time
- None of the RO data (neither METOP/RQ, nor S6A, Comm, …) are bias corrected/
- Global profiles/day in (parethesis)
- Prime results:
 - Most column sees benefit (<1 hPa, <46 km MSL)
 - Above 1 hPa probably not meaningful
 - Weakness ~1hPa related to anchoring of radiance bias correction (to be addressed IC4)
 - More impact below 20 hPa (25 km MSL)
 - Not seen in current Sentinel-6A
 - Note that Sentinel has a bug (suboptimal <25 km MSL)
 - Near surface (< 1 km MSL): probably not meaningful
 - RO not designed to measure the surface layer
 - and these data are in fact rejected in assimilation

Ratio of std(O-B)/B, using all METOP GPSRO, in ALL and S6A vs OPS runs (<1 improvement

Environment and Climate Change Canada Environnement et

Changement climatique Canada

Verifications III: Against ECMWF analysis

2.000

3.000

5.000

7.000

10.00

20.00

30.00

50.00

70.00 o 100.0

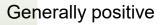
150.0 🖣 200.0

250.0

300.0

400.0

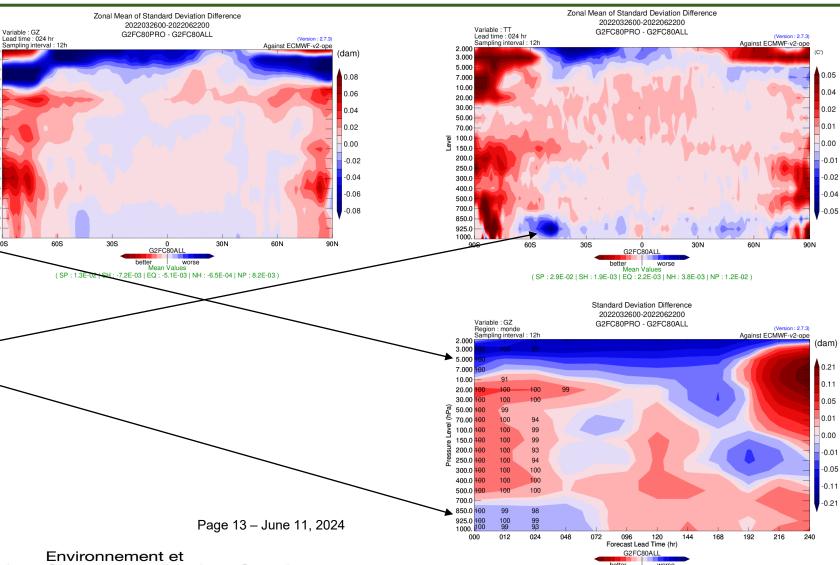
500.0


700.0

850.0

925.0

1000.


90S

Typical structure of polar satellites (higher impact at high lat)

But there are some negative effects identified

- Anomalous negative impact upper stratosphere
 - Already Identified as anchoring clash during radiance bias correction (ro against static channels). To be addressed in IC4.
 - Not problematic below 10hPa
- Some TT, HU negative impact at low alt (PBL?)
 - Coherent with RS weak _ response at low altitude
 - Fine just above PBL _
 - Not yet critical, but statistically _ significant
 - Must be addressed before increasing data further
 - Likely IC4

Environment and **Climate Change Canada**

Changement climatique Canada

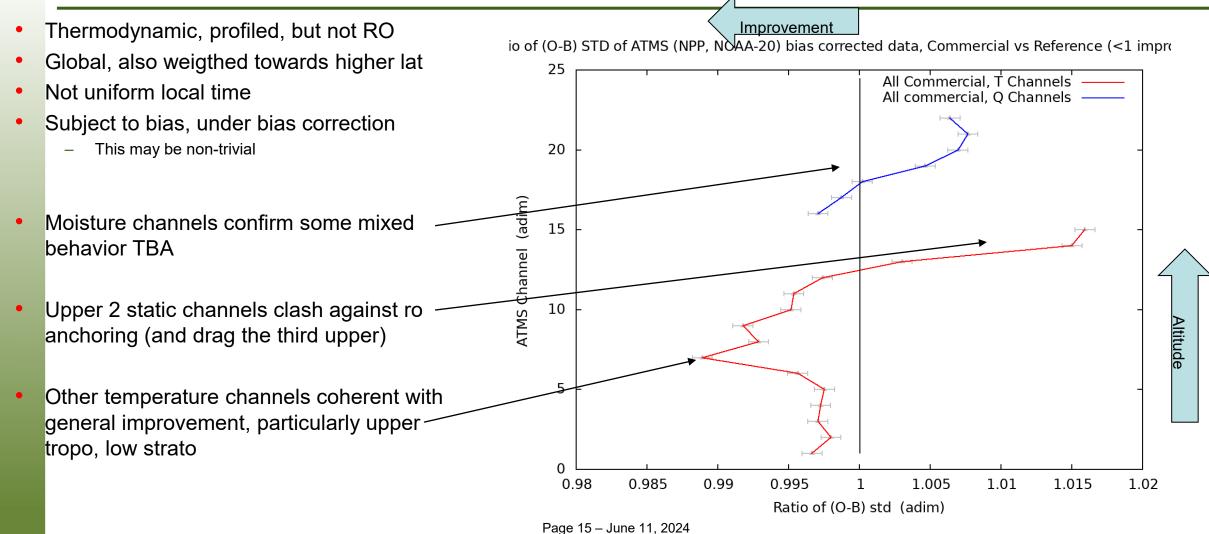
Verifications IV: MLS (Microwave limb sounder)

- Thermodynamic, but not RO
- Global, uniform weight by latitude
- Not uniform local time
- Not assimilated
- Limb geometry, moderately high vertical ٠ resolution. Reaches model's lid.
- As radiances, subject to bias. To simplify ٠ relative radiometer vs model bias, we mostly ignore bias here, look only to STD.
- Large mid-upper stratosphere improvements in the poles
- Degradation in upper stratosphere (later identified as collision of radiance anchors. ro against static channels). No impact below. TBA in later research.
- Generally positive elsewhere
- MLS not sensitive below 300 hPa

(-Delta STD)/STD MLS O-B ALL vs OPS (K), Red ALL better 0.100 -1.00.075 -0.50.050 0.0 0.025 1.0 0.000 log₁₀f 1.5 -0.025 2.0 -0.0502.5 -0.075 -0.100-80 -60-4080 -20 20 40 60 Lat

Environment and Climate Change Canada Page 14 – June 11, 2024

Environnement et Changement climatique Canada

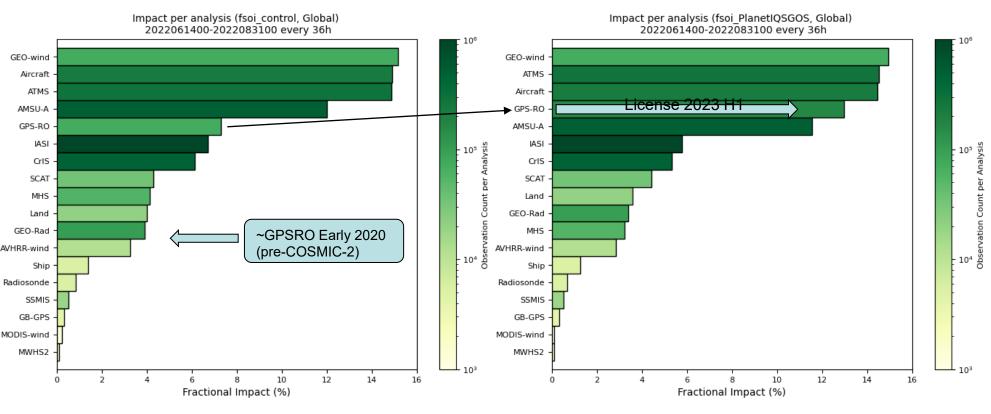


б

reduction/increase

⁻ractional

Verifications V: ATMS (NPP & NOAA-20)

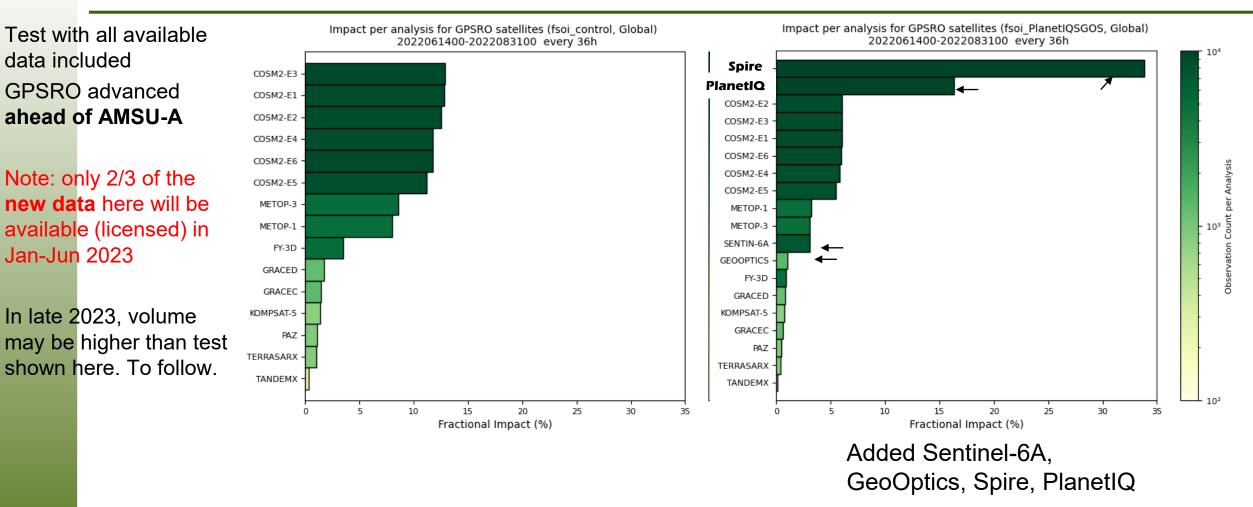


Verifications VI: 24h FSOI, Global weighted, dry norm

Test with all available data included GPSRO advanced ahead of AMSU-A

Note: only 2/3 of the **new data** here will be available (licensed) in Jan-Jun 2023 Ballpark estimation for operationally available in 2023 H1 marked in the arrow

In late 2023, volume may be higher than test shown here. To follow.

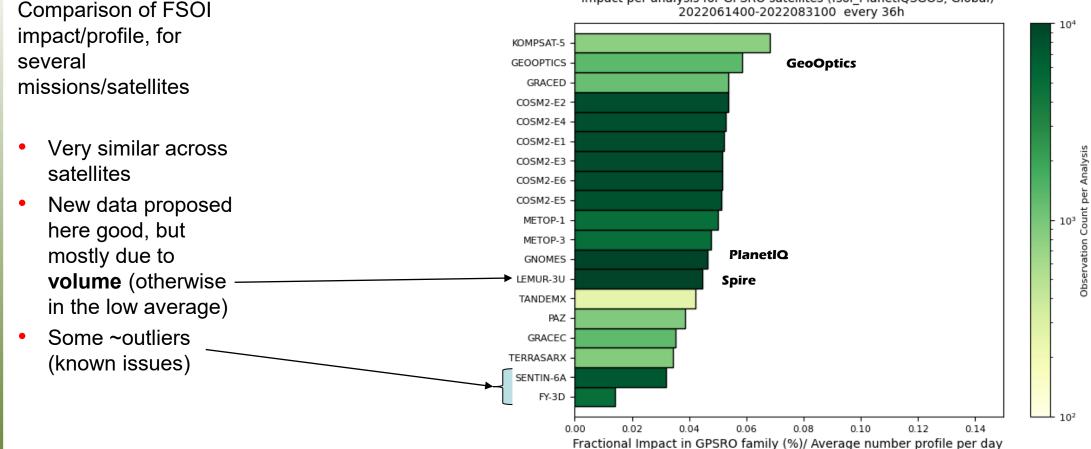

Added Sentinel-6A (since approved), GeoOptics, Spire, PlanetIQ

Page 16 – June 11, 2024

Canada

Environment and Climate Change Canada

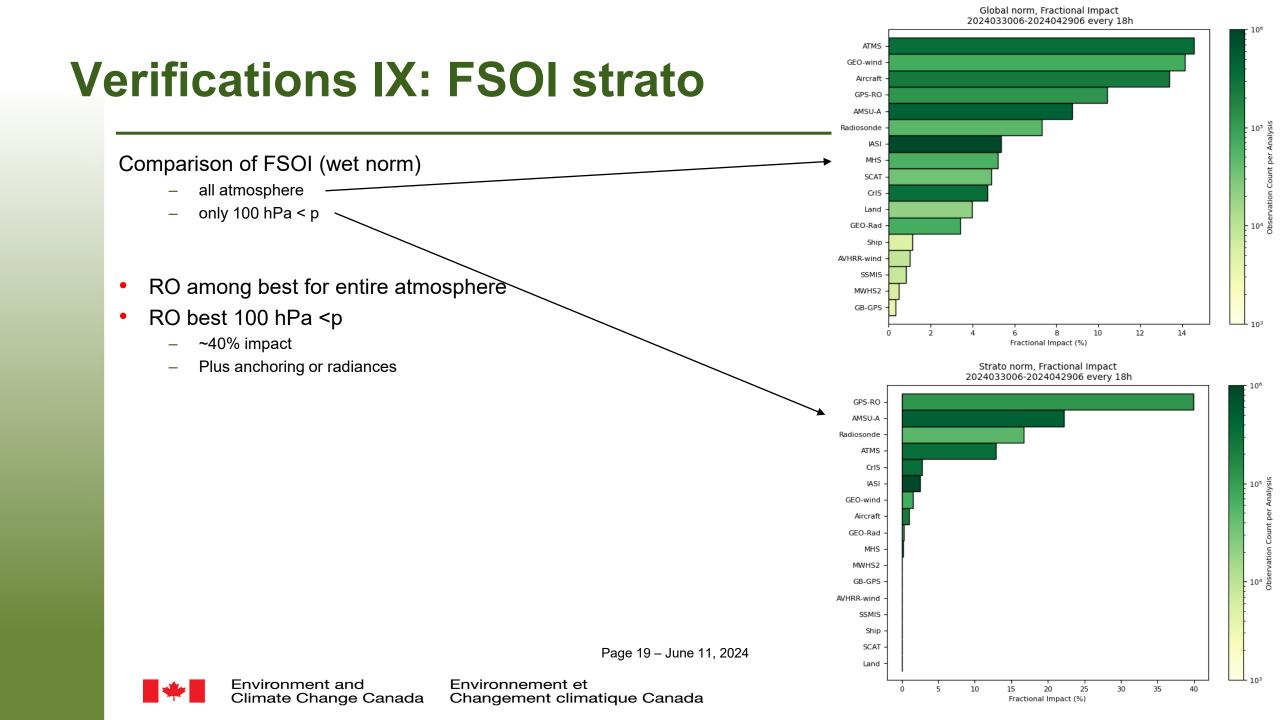
Verifications VII: Global-weighted FSOI (only RO)



Page 17 – June 11, 2024

Canada

Environment and Climate Change Canada


Verifications VIII: FSOI Number of profiles as a quantitative measure

Impact per analysis for GPSRO satellites (fsoi PlanetIQSGOS, Global)

Page 18 – June 11, 2024

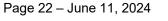
Brief

Commercial data in general particular show improvement at short-mid range

- At 6h, in the (Spire+GeoOp), thermo fcst error reduced by 2.5%, entire column, max at 8-10 km above MSL. Not improved above 2 hPa.
 - Good processing (by UCAR) of GeoOptics, Spire. Above 2hPa, known issues with **radiance bias correction**.
- At 6h, in the (Spire+GeoOp+PlanetIQ), thermo fcst error reduced by **3.5%**, similar properties
 - Approx: 0.4% per 1000 occultations/day reduction in background uncertainty
 - Note that there is an additional pool of ~10-15 kocc/day, of which this is but a sample. Potential of 8% reduction at 6h field with already flying assets
- Statistically significant impacts to METOP/RO, RS (UTLS/T, PBL/Q, midtropo/wind), ATMS.
- Very large impact strato both poles.
- Compatible signature against ECMWF
- Compatible signature against ATMS/T channels
- Apparently weak signature against ATMS/Q channels
 - But bias correction is an issue. Substantial bias adjustments seen in mid strato. Unclear if bias settled even after 3 months.
 - Compatible with issue below PBL
- Net result, good, generally compatible with our understanding
 - Upper troposphere, low and mid stratosphere, apparently able to accept even higher volume.
 - But radiance bias correction issues to be understood better (clash of anchoring in upper strato, cause identified and being adressed towards IC4)
 - Expected more from **below-PBL**. Cause TBD, to be further researched until IC4, and **before any further increase in volume**.
- All tested data would lead to a net benefit
- FSOI shows that all data are positive.
 - Some differences between emitters & receivers, in agreement with our understanding of their hardware (atomic clock stability, antennae SNR)
 - E.g. GLONASS somewhat more noisy
 - Known issues with FY-3D and Sentinel-6A, cause identified (detailed latlon, net positive but underperforming).
 - Homogeneous data across missions (well tested EUMETSAT and UCAR software)

Page 20 - June 11, 2024

Caveats


- Net benefit, but there were issues identified. •
- Not necessarily data's fault, most likely our system
 - Clash of **anchoring** (upper static radiance channels)
 - **PBL** numeric response to assimilated data (filtering PBL RO data **did not help**)
 - Choice of N vs BA at low altitude
- Potential future growth of data must be progressive, with time to fix any issues ٠
- Hardware was **not** the limiting factor (some minor details through SNR) ٠
- **Provider software appeared critical:** ٠
 - Earlier versions received from SP, GO were not ready for OPS or even test (trivially verified)
 - Well-tested software by EUMETSAT, UCAR appears ok (critical for this test: UCAR software).
- Now system tested robust until 20k prof/day •
- Free atmosphere (700-10 hPa) ready to accept more, but hints of localized issues
 - Midlatitude PBI
- Not recommended to exceed 20k/day before issues adressed. •
- Likely ready to exceed 20k/day within 1-3 yr. Progressive, ramp-up recommended.

Approach now being followed

- Success of N in prime region implies we will keep it in the core region
- Limitations in low tropo, upper stratosphere
 - Hybrid N, BA is under research
 - BA to be preferred for low tropo, upper strato
 - Exact hybrid strategy TBD
- N, BA cross-related by integral relationships
 - They are approx. derivative/integral relationships
 - Background matrix may not contain all subtleties of integral/derivative relationships
 - Some obs may better fit with relationships that do exist in the background representation
 - Some atmospheric features are better represented through values (eg pres, temp, dens)
 - Some are better represented through gradients (eg PBL, tropopause)
 - Despite they may even appear equivalent, their convergence may differ considerably
 - We **do not assume** that one single expression of the profiles may be universally the best

