Stratospheric Temperature Biases in the ERA5 reanalysis & plans for ERA6

Bill Bell¹, Hans Hersbach¹, Paul Berrisford¹, András Horányi¹, Joaquin Muñoz Sabater¹, Julien Nicolas¹, Paul Poli¹, Raluca Radu¹, Dinand Schepers¹, Adrian Simmons¹, Cornel Soci¹, Alison Cobb¹ Mikael Kaandorp1

Patrick Laloyaux¹, Massimo Bonavita¹,

Andrzej Klonecki2

[1] ECMWF, Reading, UK [2] Spascia, Toulouse, France

European
Commission

Overview

Biases in stratospheric temperatures in ERA5

- In '*model space*' anomalies & analysis increments
- ERA 5.1 & the role of RO observations
- In '*observation space*' mean first guess departures in ERA5, ERA-Interim & *proto-ERA6*

Southern winter polar bias in ERA5

• Exposed by anomalies & IRIS data

Exploiting information from RO observations back in time

- Weak constraint 4D-Var & model error forcing
- Using early sounding data (IRIS in 1970) to evaluate model error correction strategies

Summary

Overview

Biases in stratospheric temperatures in ERA5

- In '*model space*': anomalies & analysis increments
- ERA 5.1 & the role of RO observations
- In '*observation space*': mean first guess departures in ERA5, ERA-Interim & *proto-ERA6*

Southern winter polar bias in ERA5

Exposed by anomalies & IRIS data

Exploiting information from RO observations back in time

- Weak constraint 4D-Var & model error forcing
- Using early sounding data (IRIS in 1970) to evaluate model error correction strategies

Summary

• General problems in reanalysis temperatures above 10 hPa well documented (see SPARC-RIP report 2021).

Climate Change

 $\mathbf{3}$

Pressure (hPa)

Pressure (hPa)

(2) Cold model bias in UTLS - exposed in early period

• Very few observational constraints on stratospheric temperature analysis in the early 1940s – so UTLS cold bias is exposed.

• Analysis increments in 10-200 hPa layer very small 1940 (< 20mK above 100 hPa as a global mean)

100-1 hPa

 -0.08

 -0.10

 -0.32

 -0.40

(3) Cooler than expected anomaly 1972-1979 – VarBC of VTPR

- General problem foreseen & analysed in Eyre (QJ, 2017): with VarBC, if radiances are dominant (cf anchors) model bias is reinforced
- VTPR channels 1 & 2 bias corrected using VarBC reinforcing model cold bias
- Despite clear benefits (from assimilating VTPR) in improving synoptic analysis (earlier slide) mean state exhibits a discontinuity.
- VTPR exhibits significant radiometric and spectral errors ⇒ we need VarBC !

European Commission

(4) Impact of model cold biases 2000-2006

• ERA5 and ERA5.1: See next slide

The improved mean state for stratospheric temperature in ERA5.1

Climate

Monthly average observation-background differences from 1979 onwards for all assimilated bias-adjusted radiosonde temperature data (K) between 40 and 60 hPa, for ERA-Interim, ERA5 (based on 1979- B_{cli} before 2000 and 41r2-B $_{\text{cli}}$ afterwards) and ERA5.1 (using 1979- B_{chi} from 2000-2006).

Hersbach, H. et al., 2020 , doi:10.1002/qj.3803

- ERA5.1 provides an improved mean state for stratospheric temperature.
- In the troposphere the difference between ERA5 and ERA5.1 is very small.

(see A. Simmons *et al*, ECMWF Tech Memo 859, Jan 2020)

Model error manifested in biased first guess departures

NOAA-18 AMSU-A8

opernicus

European

Commission

æFCN

Climate **Change**

Model Error / AMSU-A Mean first guess departures in ERA5

ERA5 mean first guess departures shown for AMSU-A

Error bars represent $(\pm 1\sigma)$ spread over the lifetime of each sensor

Consistent picture of :

- a cold model bias mid-trop to mid-strat
- a (larger) warm model bias above 10 hPa

Broadly consistent with analysis increments in ERA5 (*below, from Fig 16, Hersbach et al, 2020*)

Model Error / AMSU-A Mean first guess departures in proto-ERA6 testing (CY49R2)

- Several improvements in analysis of the stratosphere since 2016:
	- Weak constraint 4D-Var
	- Improvement in dynamics
- Statistics shown based on JJA 2022 49R2 experiment
- Tco639 (18 km resolution) ERA6 production will be 14 km
- Overall forecast model in better agreement with observations

Overview

-
-
-

Southern winter polar bias in ERA5

• Exposed by anomalies & IRIS data

-
-

 -2.4

 -3.2

100-1 hPa

3.6 2.4

 1.2

 0.0

 -1.2

 -2.4

 -3.6 $\left[\begin{array}{cc} -4.8 \\ -6.0 \end{array}\right]$

1000-100 hPa

 3.2 24

 16

 0.8

 0.0

 -0.8 -1.6

 -2.4

 -3.2
 -4.0

Climate Change

ure (hPa)

er
A 300

100

150
200

500 700

IRIS experiments

1972

• Generally, ERA5 temperature analyses above 10 hPa exhibit biases and discontinuities

- Particularly large biases evident in southern polar winter (>> 6K in the plot shown)
- Repeatable from year-to-year (before 1972)
- Reduced following the assimilation of VTPR data (Nov 1972 - Jan 1979)

Initial experiments assimilating IRIS in the IFS

 $\overline{3}$

o

K (Channel 193)

 $\frac{1}{10}$ -1
FG departure /

 -3

-4

Typical 12 hour coverage

- Operated on Nimbus-4, from April 1970 January 1971
- Nadir only observations. Spectral range 400 1600 cm⁻¹
- Resolution: 2.53 cm $^{-1}$ to 2.69 cm $^{-1}$
- 94 km footprint
- 13 s measurement time
- Coverage to 80°N to 80°S (rely on **B** to propagate information to poles)

Daily time coverage / %

Investigating biases using early hyperspectral sounding data (Nimbus-4 IRIS, 1970)

- IRIS data has been shown to be valuable in improving SH analysis quality (April 1970 January 1971)
- Valuable for assessing biases in ERA5 in previously unobserved regions (eg S. Polar upper stratophere)
- Highest peaking channel is particulalry valuable

Climate

• During the GNSS-RO era (2006 -) the stratospheric temperature analysis is realistic

Impact of assimilating IRIS on southern polar stratospheric biases

- **Change Change Change During the GNSS-RO era (2006) the** stratospheric temperature analysis is realistic
	- In the early period $(1940-75)$ of the reanalysis, few observations constrain the analysis ⇒ model biases are exposed. At 5hPa, temperatures are **10 – 25 K warmer** in mid-winter, relative to 2006-2022

stratospheric temperature analysis is realistic

ERA5: 2006-2022

ERA5: 1940-1975

 10^{120}

Jul 30

Aug 10

1970

- In the early period (1940-75) of the reanalysis, few observations constrain the analysis ⇒ model biases are exposed. At 5hPa, temperatures are **10 – 25 K warmer** in mid-winter, relative to 2006-2022
- **ERA5** (41R2, 2016) in 1970 is at the top end of this range, with temperatures of 230K in mid-winter

280.0

stratospheric temperature analysis is realistic

Impact of assimilating IRIS on S. polar stratospheric biases

- In the early period (1940-75) of the reanalysis, few observations constrain the analysis ⇒ model biases are exposed. At 5hPa, temperatures are **10 – 25 K warmer** in mid-winter, relative to 2006-2022
- **ERA5** (41R2, 2016) in 1970 is at the top end of this range, with temperatures of 230K in mid-winter
- The **CONTROL** (48R1, 2022) exhibits the same warm bias

280.0

stratospheric temperature analysis is realistic

Impact of assimilating IRIS on S. polar stratospheric biases

- In the early period (1940-75) of the reanalysis, few observations constrain the analysis ⇒ model biases are exposed. At 5hPa, temperatures are **10 – 25 K warmer** in mid-winter, relative to 2006-2022
- **ERA5** (41R2, 2016) in 1970 is at the top end of this range, with temperatures of 230K in mid-winter
- The **CONTROL** (48R1, 2022) exhibits the same warm bias
- **Assimilating IRIS** *gradually* brings temperatures to more realistic values. Note: increase $($) from 16th-24th July is associated with an **outage** of IRIS observations

280.0

• During the GNSS-RO era (2006 -) the stratospheric temperature analysis is realistic

Impact of assimilating IRIS on S. polar stratospheric biases

- In the early period (1940-75) of the reanalysis, few observations constrain the analysis ⇒ model biases are exposed. At 5hPa, temperatures are **10 – 25 K warmer** in mid-winter, relative to 2006-2022
- **ERA5** (41R2, 2016) in 1970 is at the top end of this range, with temperatures of 230K in mid-winter
- The **CONTROL** (48R1, 2022) exhibits the same warm bias
- **Assimilating IRIS** *gradually* brings temperatures to more realistic values. Note: increase $($) from 16th-24th July is associated with an **outage** of IRIS observations
- Using **Constrained VarBC** (Han & Bormann) reduces the bias absorbed by VarBC, and accelerates cooling of the analysis towards more realistic values.

Overview

Biases in stratospheric temperatures in ERA5

- In '*model space*': anomalies & analysis increments
- ERA 5.1 & the role of RO observations
- In '*observation space*': mean first guess departures in ERA5, ERA-Interim & *proto-ERA6*

Southern winter polar bias in ERA5

Exposed by anomalies & IRIS data

Exploiting information from RO observations back in time

- Weak constraint 4D-Var & model error forcing
- Using early sounding data (IRIS in 1970) to evaluate model error correction strategies

Standard 4D-Var formulation

Climate Change

4D-Var is a common algorithm to find the optimal initial state by minimising the discrepancies with the prior estimate and the observations

Model's equation

 $x_k = \mathcal{M}_k(x_{k-1})$

4D-Var cost function

$$
J(x_0) = \frac{1}{2}(x_0 - x_b)^T \mathbf{B}^{-1}(x_0 - x_b)
$$

+
$$
\frac{1}{2} \sum_{k=0}^{K} [y_k - \mathcal{H}(x_k)]^T \mathbf{R}_k^{-1} [y_k - \mathcal{H}(x_k)]
$$

 \rightarrow Standard formulation assumes that the model is perfect

→ A model trajectory is entirely determined by its initial condition

Weak-constraint 4D-Var formulation

We assume that the model is not perfect, adding an error term η in the model equation

 $x_k = \mathcal{M}_k(x_{k-1}) + \eta$ for $k = 1, 2, \cdots, K$

The model error estimate η contains 3 physical fields (temperature, vorticity and divergence)

 \rightarrow Introduce additional degrees of freedom to fit background and observations

 \rightarrow A model trajectory is entirely determined by its initial condition and the model error forcing

→ Concept of scale separation introduced between background and model errors

 \rightarrow Constant model error forcing over the assimilation window

Laloyaux et al., Exploring the potential and limitations of weak-constraint 4D-Var, 2020

Weak-constraint 4D-Var formulation

We assume that the model is not perfect, adding an error term η in the model equation

$$
x_k = \mathcal{M}_k(x_{k-1}) + \eta \quad \text{for } k = 1, 2, \cdots, K
$$

The model error estimate η contains 3 physical fields (temperature, vorticity and divergence)

$$
J(x_0, \eta) = \frac{1}{2}(x_0 - x_b)^T \mathbf{B}^{-1}(x_0 - x_b)
$$

Model initial condition

$$
+ \frac{1}{2} \sum_{k=0}^{K} [y_k - \mathcal{H}(x_k)]^T \mathbf{R}_k^{-1} [y_k - \mathcal{H}(x_k)]
$$

$$
+ \frac{1}{2} (\eta - \eta_b)^T \mathbf{Q}^{-1} (\eta - \eta_b)
$$

 \rightarrow Introduce additional degrees of freedom to fit background and observations

- A model trajectory is entirely determined by its initial condition and the model error forcing
- → Concept of scale separation introduced between background and model errors

→ Constant model error forcing over the assimilation window

Laloyaux et al., Exploring the potential and limitations of weak-constraint 4D-Var, 2020

Climate **Change**

Model error climatology derived from weak constraint 4D-Var estimates of model error

Model error forcing experiments in 1970 – impact on upper stratospheric temperatures

Climate

- For strong constraint & model error forcing experiments: increase in resolution (28km to 9km) helps lower minimum temperatures (230K->223K in June 1970)
- Model error forcing (both types) results in additional cooling of ~5K, with minimum temperatures of 217K
- but doesn't bring temperatures to the minimum temperatures expected (from IRIS assimilation experiments) of ~210K
- expect ERA6 (TCo799) will be closer to behavior of TCo1279 experiment shown here.

Verification of impacts of MEF: background fits to IRIS and radiosondes

Change

Background fits to radiosnde temperatures 20th April – 26th August 1970

Verification of impacts of MEF: background fits to IRIS and radiosondes

 2.5

 3.5

3

 \mathcal{P}

Background fits to radiosnde temperatures 20th April – 26th August 1970

- NN MEF improves bias and synoptic performance
- IRIS provides unique insight into biases in otherwise observation sparse domains
- But significant biases remain

Overview

-
-
-

-
-

Summary / Future Perspectives

Summary & conclusions

- Biases in stratospheric temperatures are particularly evident in ERA5. GNSSRO data:
	- **Has played a key role in mitigating the effects of these biases** in the recent (2006 →) era, and ;
	- **Will play a role in mitigating their effects in earlier epochs of ERA6** (1950 → 2006) through WC-4DVar & model error forcing
- The magnitude of the biases is large (typically ~1K, but up to 20K!). In successive generations of reanalyses, attention will turn to much smaller biases in other regions (& variables). We hope that the diagnostics and methods used to mitigate in ERA5 & ERA6 will be useful in those cases
- Short lived early satellite missions (*e.g.* IRIS, in 1970) have proved valuable in assessing the performance of model error forcing, by providing observations in otherwise unobserved regions/domains
- ERA6 will make use of reprocessed RO datasets for COSMIC, CHAMP, GRACE and GRAS provided by EUMETSAT. Impacts (not shown here) are generally positive
- RO data , and other reference datasets (e.g. GRUAN radiosondes & CrIS radiances), perhaps have a role to play in evaluating uncertainties in ERA6 (withhold a subset of RO observations, and use to validate the reanalysis ?)

Extra slides

Possible approaches to determining mean-state uncertainty

The observing system component

- Defined here as "*uncertainty in mean state arising from uncorrected biases in the observing system & choice of observing system configuration*"
- OSEs with different plausible configurations of observing system, for each epoch
- Simplest approach: withdraw 'redundant' components of observing system and evaluate change in the mean state (next slide)
- Other factors: choice of observational data, bias model, QC/thinning, observation errors, ...

Possible approaches to determining mean-state uncertainty

The model component

- Defined here as "*uncertainty in mean state arising from uncertain model parameters and forcings*"
- Changes in time, due to the changing observing system
- OSEs with perturbed model parameters & alternative choices of forcings
- Key model parameters? draw upon experience of EPS and climate modelling communities
- Sample time dependence using paired down modern observing system, or run in past epochs

• Perturbed by magnitudes consistent with documented uncertainties and/or giving rise to no significant degradation in forecast skill in OSEs

Change

Weak constraint 4D-Var offers a solution for ERA6.

In addition, future improvements are expected from :

[1] – revised radiation scheme, improved SW solar spectrum, improved (and interactive) ozone,

[2] improved dynamical core

[3] reduction of $H₂O$ in lower stratosphere, improved methane oxidation scheme

