Stratospheric Temperature Biases in the ERA5 reanalysis & plans for ERA6

Bill Bell¹, Hans Hersbach¹, Paul Berrisford¹, András Horányi¹, Joaquin Muñoz Sabater¹, Julien Nicolas¹, Paul Poli¹, Raluca Radu¹, Dinand Schepers¹, Adrian Simmons¹, Cornel Soci¹, Alison Cobb¹ Mikael Kaandorp¹

Patrick Laloyaux¹, Massimo Bonavita¹,

Andrzej Klonecki²

[1] ECMWF, Reading, UK[2] Spascia, Toulouse, France

Climate Change

Overview

Biases in stratospheric temperatures in ERA5

- In 'model space' anomalies & analysis increments
- ERA 5.1 & the role of RO observations
- In 'observation space' mean first guess departures in ERA5, ERA-Interim & proto-ERA6

Southern winter polar bias in ERA5

• Exposed by anomalies & IRIS data

Exploiting information from RO observations back in time

- Weak constraint 4D-Var & model error forcing
- Using early sounding data (IRIS in 1970) to evaluate model error correction strategies

Summary

Overview

Biases in stratospheric temperatures in ERA5

- In 'model space': anomalies & analysis increments
- ERA 5.1 & the role of RO observations
- In 'observation space': mean first guess departures in ERA5, ERA-Interim & proto-ERA6

Southern winter polar bias in ERA5

Exposed by anomalies & IRIS data

Exploiting information from RO observations back in time

- Weak constraint 4D-Var & model error forcing
- Using early sounding data (IRIS in 1970) to evaluate model error correction strategies

Summary

General problems in reanalysis temperatures above 10 hPa well documented (see SPARC-RIP report 2021).

Climate Change

(2) Cold model bias in UTLS - exposed in early period

- Very few observational constraints on stratospheric temperature analysis in the early 1940s so UTLS cold bias is exposed.
- Analysis increments in 10-200 hPa layer very small 1940 (< 20mK above 100 hPa as a global mean)

100-1 hPa

(3) Cooler than expected anomaly 1972-1979 – VarBC of VTPR

- General problem foreseen & analysed in Eyre (QJ, 2017): with VarBC, if radiances are dominant (cf anchors) model bias is reinforced
 VTPR channels 1 & 2 bias corrected using VarBC reinforcing model cold bias
- Despite clear benefits (from assimilating VTPR) in improving synoptic analysis (earlier slide) mean state exhibits a discontinuity.
- VTPR exhibits significant radiometric and spectral errors ⇒ we need VarBC !

European Commission

(4) Impact of model cold biases 2000-2006

ERA5 and ERA5.1: See next slide ٠

The improved mean state for stratospheric temperature in ERA5.1

Climate

Monthly average observation-background differences from 1979 onwards for all assimilated bias-adjusted radiosonde temperature data (K) between 40 and 60 hPa, for ERA-Interim, ERA5 (based on 1979-B_{cli} before 2000 and 41r2-B_{cli} afterwards) and ERA5.1 (using 1979-B_{cli} from 2000-2006).

Hersbach, H. et al., 2020 , doi:10.1002/qj.3803

- ERA5.1 provides an improved mean state for stratospheric temperature.
- In the troposphere the difference between ERA5 and ERA5.1 is very small.

(see A. Simmons et al, ECMWF Tech Memo 859, Jan 2020)

Model error manifested in biased first guess departures

NOAA-18 AMSU-A8

time

opernicus

European

Commission

DC ECM

Climate Change

Model Error / AMSU-A Mean first guess departures in ERA5

ERA5 mean first guess departures shown for AMSU-A

Error bars represent $(\pm 1\sigma)$ spread over the lifetime of each sensor

Consistent picture of :

- a cold model bias mid-trop to mid-strat
- a (larger) warm model bias above 10 hPa

Broadly consistent with analysis increments in ERA5 (below, from Fig 16, Hersbach et al, 2020)

Model Error / AMSU-A Mean first guess departures in ERA-Interim

Model Error / AMSU-A Mean first guess departures in proto-ERA6 testing (CY49R2)

- Several improvements in analysis of the stratosphere since 2016:
 - Weak constraint 4D-Var
 - Improvement in dynamics
- Statistics shown based on JJA 2022 49R2 experiment
- Tco639 (18 km resolution) ERA6 production will be 14 km
- Overall forecast model in better agreement with observations

Overview

Biases in stratospheric temperatures in ERA5

- In '*model space*': anomalies & analysis increments
- ERA 5.1 & the role of RO observations
- In 'observation space': mean first guess departures in ERA5, ERA-Interim & proto-ERA6

Southern winter polar bias in ERA5

• Exposed by anomalies & IRIS data

Exploiting information from RO observations back in time

- Weak constraint 4D-Var & model error forcing
- Using early sounding data (IRIS in 1970) to evaluate model error correction strategies

Summary / Future Perspectives

Upper stratospheric biases in ERA5: Temperature anomalies relative to ERA5 climate

IRIS experiments

Generally, ERA5 temperature ٠ analyses above 10 hPa exhibit biases and discontinuities

Particularly large biases evident in southern polar winter (>> 6K in the plot shown)

100-1 hPa

3.6

2.4

1.2

0.0

-1.2

-2.4

-3.6

-4.8 -6.0

- Repeatable from year-to-year (before 1972)
- Reduced following the assimilation of VTPR data (Nov 1972 - Jan 1979)

Initial experiments assimilating IRIS in the IFS

3

0 T Channel 193)

-1 -1 FG departure /

-3

-4

Typical 12 hour coverage

- Operated on Nimbus-4, from April 1970 January 1971
- Nadir only observations. Spectral range 400 1600 cm⁻¹
- Resolution: 2.53 cm⁻¹ to 2.69 cm⁻¹
- 94 km footprint
- 13 s measurement time
- Coverage to 80°N to 80°S (rely on **B** to propagate information to poles)

Daily time coverage / %

Year	Month	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
1970	04									18	63	0	0	2	95	88	77	86	2	79	93	88	85	85	5	83	0	1	86	79	76	
	05	82	3	85	5	92	79	85	85	93	93	93	93	79	52	84	93	93	5	93	86	81	0	92	86	93	90	90	82	79	5	88
	06	90	0	90	77	59	59	71	70	86	63	77	79	93	93	91	93	6	90	0	3	93	93	93	93	5	93	91	0	91	93	
	07	93	1	90	93	93	85	85	5	0	89	89	68	92	73	4	76	94	3	0	0	4	86	5	94	94	79	79	1	0	0	89
	08	85	79	88	1	0	76	9	91	85	86	82	90	86	94	80	0	55	5	94	2	59	2	79	80	86	5	0	0	2	82	47
	09	86	88	2	88	95	80	95	86	95	2	0	91	89	80	94	5	75	0	47	36	3	0	0	0	96	94	88	89	93	94	
	10	2	85	61	63	58	85	95	86	6	0	0	0	4	21	93	80	5	89	1	90	63	3	88	94	88	4	4	85	78	0	0
	11	93	91	91	85	0	0	60	86	83	0	93	81	93	97	1	91	92	94	89	93	98	93	82	54	2	96	93	69	82	81	
	12	71	70	68	1	69	77	76	0	77	0	1	63	66	61	0	61	70	69	0	76	72	72	73	68	74	3	71	72	69	69	75
1971	01	0	70	64	73	63	69	0	0	53	0	0	0	0	0	0	0	46	52	0	36	42	46	0	35	44	46	0	40	40	48	

Investigating biases using early hyperspectral sounding data (Nimbus-4 IRIS, 1970)

- IRIS data has been shown to be valuable in improving SH analysis quality (April 1970 January 1971)
- Valuable for assessing biases in ERA5 in previously unobserved regions (eg S. Polar upper stratophere)
- Highest peaking channel is particulalry valuable

Climate Change

• During the GNSS-RO era (2006 -) the stratospheric temperature analysis is realistic

Impact of assimilating IRIS on southern polar stratospheric biases

- During the GNSS-RO era (2006) the stratospheric temperature analysis is realistic
- In the early period (1940-75) of the reanalysis, few observations constrain the analysis ⇒ model biases are exposed. At 5hPa, temperatures are 10 – 25 K warmer in mid-winter, relative to 2006-2022

- During the GNSS-RO era (2006) the • stratospheric temperature analysis is realistic
- In the early period (1940-75) of the reanalysis, few observations constrain the analysis \Rightarrow model biases are exposed. At 5hPa, temperatures are 10 - 25 K warmer in mid-winter, relative to 2006-2022
- ERA5 (41R2, 2016) in 1970 is at the top end of this range, with temperatures of 230K in mid-winter

14130

AU9 10

1970

280.0

During the GNSS-RO era (2006 -) the • stratospheric temperature analysis is realistic

Impact of assimilating IRIS on S. polar stratospheric biases

- In the early period (1940-75) of the reanalysis, few observations constrain the analysis \Rightarrow model biases are exposed. At 5hPa, temperatures are 10 – 25 K warmer in mid-winter, relative to 2006-2022
- ERA5 (41R2, 2016) in 1970 is at the top end of this range, with temperatures of 230K in mid-winter
- The **CONTROL** (48R1, 2022) exhibits the same warm bias

280.0

During the GNSS-RO era (2006 -) the stratospheric temperature analysis is realistic

Impact of assimilating IRIS on S. polar stratospheric biases

- In the early period (1940-75) of the reanalysis, few observations constrain the analysis \Rightarrow model biases are exposed. At 5hPa, temperatures are 10 – 25 K warmer in mid-winter, relative to 2006-2022
- ERA5 (41R2, 2016) in 1970 is at the top end of this range, with temperatures of 230K in mid-winter
- The **CONTROL** (48R1, 2022) exhibits the same warm bias
- Assimilating IRIS gradually brings temperatures to more realistic values. Note: increase (*I*) from 16th-24th July is associated with an outage of IRIS observations

Level 5hPa Mean Temperature South of -60 S 270 **ERA5 (CY41R2)** ERA5: 2006-2022 260 CONTROL (CY48R1) ERA5; 1940-1975 IRIS **IRIS & CVarBC** 210 200 14130 AUG 10 Jun 02 Jun 20 Jun 20 Jun 30 14120 14120 1970

280.0

During the GNSS-RO era (2006 -) the stratospheric temperature analysis is realistic

Impact of assimilating IRIS on S. polar stratospheric biases

- In the early period (1940-75) of the reanalysis, few observations constrain the analysis \Rightarrow model biases are exposed. At 5hPa, temperatures are 10 – 25 K warmer in mid-winter, relative to 2006-2022
- ERA5 (41R2, 2016) in 1970 is at the top end of this range, with temperatures of 230K in mid-winter
- The **CONTROL** (48R1, 2022) exhibits the same warm bias
- **Assimilating IRIS** gradually brings temperatures to more realistic values. Note: increase (*J*) from 16th-24th July is associated with an outage of IRIS observations
- Using Constrained VarBC (Han & Bormann) reduces the bias absorbed by VarBC, and accelerates cooling of the analysis towards more realistic values.

Overview

Biases in stratospheric temperatures in ERA5

- In '*model space*': anomalies & analysis increments
- ERA 5.1 & the role of RO observations
- In 'observation space': mean first guess departures in ERA5, ERA-Interim & proto-ERA6

Southern winter polar bias in ERA5

Exposed by anomalies & IRIS data

Exploiting information from RO observations back in time

- Weak constraint 4D-Var & model error forcing
- Using early sounding data (IRIS in 1970) to evaluate model error correction strategies

Summary / Future Perspectives

Standard 4D-Var formulation

Climate Change

4D-Var is a common algorithm to find the optimal initial state by minimising the discrepancies with the prior estimate and the observations

Model's equation

 $x_k = \mathcal{M}_k(x_{k-1})$

4D-Var cost function

$$J(x_0) = \frac{1}{2} (x_0 - x_b)^T \mathbf{B}^{-1} (x_0 - x_b) + \frac{1}{2} \sum_{k=0}^{K} [y_k - \mathcal{H}(x_k)]^T \mathbf{R}_k^{-1} [y_k - \mathcal{H}(x_k)]$$

- → Standard formulation assumes that the model is perfect
- ➔ A model trajectory is entirely determined by its initial condition

Weak-constraint 4D-Var formulation

We assume that the model is not perfect, adding an error term η in the model equation

 $x_k = \mathcal{M}_k(x_{k-1}) + \eta$ for $k = 1, 2, \cdots, K$

The model error estimate η contains 3 physical fields (temperature, vorticity and divergence)

→ Introduce additional degrees of freedom to fit background and observations

→ A model trajectory is entirely determined by its initial condition and the model error forcing

➔ Concept of scale separation introduced between background and model errors

 \rightarrow Constant model error forcing over the assimilation window

Laloyaux et al., Exploring the potential and limitations of weak-constraint 4D-Var, 2020

Weak-constraint 4D-Var formulation

We assume that the model is not perfect, adding an error term η in the model equation

$$x_k = \mathcal{M}_k(x_{k-1}) + \eta$$
 for $k = 1, 2, \cdots, K$

The model error estimate η contains 3 physical fields (temperature, vorticity and divergence)

$$J(x_0, \eta) = \frac{1}{2} (x_0 - x_b)^T \mathbf{B}^{-1} (x_0 - x_b)$$

Model initial condition
$$+ \frac{1}{2} \sum_{k=0}^{K} [y_k - \mathcal{H}(x_k)]^T \mathbf{R}_k^{-1} [y_k - \mathcal{H}(x_k)] + \frac{1}{2} (\eta - \eta_b)^T \mathbf{Q}^{-1} (\eta - \eta_b)$$

→ Introduce additional degrees of freedom to fit background and observations

- → A model trajectory is entirely determined by its initial condition and the model error forcing
- ➔ Concept of scale separation introduced between background and model errors
- \rightarrow Constant model error forcing over the assimilation window

Laloyaux et al., Exploring the potential and limitations of weak-constraint 4D-Var, 2020

Model error climatology derived from weak constraint 4D-Var estimates of model error

Model error forcing experiments in 1970 – impact on upper stratospheric temperatures

Climate Change

- For strong constraint & model error forcing experiments: increase in resolution (28km to 9km) helps lower minimum temperatures (230K->223K in June 1970)
- Model error forcing (both types) results in additional cooling of ~5K, with minimum temperatures of 217K
- ... but doesn't bring temperatures to the minimum temperatures expected (from IRIS assimilation experiments) of ~210K
- expect ERA6 (TCo799) will be closer to behavior of TCo1279 experiment shown here.

Verification of impacts of MEF: background fits to IRIS and radiosondes

Climate

Background fits to radiosnde temperatures 20th April – 26th August 1970

Background fits to radiosnde temperatures 20th April – 26th August 1970

But significant biases remain

Overview

Biases in stratospheric temperatures in ERA5

- In '*model space*': anomalies & analysis increments
- ERA 5.1 & the role of RO observations
- In 'observation space': mean first guess departures in ERA5, ERA-Interim & proto-ERA6

Southern winter polar bias in ERA5

Exposed by anomalies & IRIS data

Exploiting information from RO observations back in time

- Weak constraint 4D-Var & model error forcing
- Using early sounding data (IRIS in 1970) to evaluate model error correction strategies

Summary / Future Perspectives

Summary & conclusions

- Biases in stratospheric temperatures are particularly evident in ERA5. GNSSRO data:
 - Has played a key role in mitigating the effects of these biases in the recent (2006 \rightarrow) era, and ;
 - Will play a role in mitigating their effects in earlier epochs of ERA6 (1950 \rightarrow 2006) through WC-4DVar & model error forcing
- The magnitude of the biases is large (typically ~1K, but up to 20K!). In successive generations of reanalyses, attention will turn to much smaller biases in other regions (& variables). We hope that the diagnostics and methods used to mitigate in ERA5 & ERA6 will be useful in those cases
- Short lived early satellite missions (*e.g.* IRIS, in 1970) have proved valuable in assessing the performance of model error forcing, by providing observations in otherwise unobserved regions/domains
- ERA6 will make use of reprocessed RO datasets for COSMIC, CHAMP, GRACE and GRAS provided by EUMETSAT. Impacts (not shown here) are generally positive
- RO data , and other reference datasets (e.g. GRUAN radiosondes & CrIS radiances), perhaps have a role to play in evaluating uncertainties in ERA6 (withhold a subset of RO observations, and use to validate the reanalysis ?)

Extra slides

Possible approaches to determining mean-state uncertainty

The observing system component

- Defined here as "uncertainty in mean state arising from uncorrected biases in the observing system & choice of observing system configuration"
- OSEs with different plausible configurations of observing system, for each epoch
- Simplest approach: withdraw 'redundant' components of observing system and evaluate change in the mean state (next slide)
- Other factors: choice of observational data, bias model, QC/thinning, observation errors, ...

Possible approaches to determining mean-state uncertainty

The model component

- Defined here as "uncertainty in mean state arising from uncertain model parameters and forcings"
- Changes in time, due to the changing observing system
- OSEs with perturbed model parameters & alternative choices of forcings
- Key model parameters? draw upon experience of EPS and climate modelling communities
- Sample time dependence using paired down modern observing system, or run in past epochs

 Perturbed by magnitudes consistent with documented uncertainties and/or giving rise to no significant degradation in forecast skill in OSEs

Model biases in the stratosphere

Change

Weak constraint 4D-Var offers a solution for ERA6.

In addition, future improvements are expected from :

[1] – revised
 radiation scheme,
 improved SW solar spectrum,
 improved (and interactive) ozone,

[2] improved dynamical core

[3] reduction of H_2O in lower stratosphere, improved methane oxidation scheme

