Institute of EXCELENCIA MARÍA DE MAEZTU **Space Sciences**

Advances in GNSS PRO forward model and sensitivity to NWP microphysics schemes

E. Cardellach^{1,2}, R. Padullés^{1,2}, A. Paz^{1,2}

¹Institut de Ciències de l'Espai (ICE-CSIC) ²Institut d'Estudis Espacials de Catalunya (IEEC)

With contributions from: Shu-ya Chen (NCU Taiwan), Bill Kuo (UCAR), Joe Turk (JPL)

Financiado por la Unión Europea

Institute of **Space Sciences** EXCELENCIA MARÍA

Traditional Radio Occultations (RO)

- GPS emitted electromagnetic waves cross the atmosphere before reaching a Low Earth Orbiter occulting behind the horizon
- **Observables:** Amplitude and phase (ϕ) of the received EM wave \rightarrow Doppler measurements \rightarrow bending angle
- The rays bend due to changes in the refractive index of the atmosphere. Such bending angle can be derived, and refractivity vertical profiles are retrieved → (T, p, q).

Data assimilation of RO

Globally distributed

Over all surfaces All weather conditions High vertical resolution

Cost-effective

REACELENCIA MARÍA DE MAEZTU

 RO- Bending angle profiles routinely assimilated into NWP prediction models for many years now

Institute of

 Large Impact has been demonstrated

Receiving antenna

RHCP

emission

Standard RO

missions

2

Polarimetric Radio Occultations (PRO)

- Concept introduced in 2009
- RO rays are collected using a 2-linearly polarized antenna (H,V)
- If these rays happen to cross precipitation, a **positive differential phase** shift $\Delta \Phi = \Phi_H \Phi_V$ is expected owing to the asymmetric shape of precipitating

 $\Delta \Phi (mm)$

MARÍA DE MAEZTU

- Is it technologically possible to measure the polarimetric RO?
- Are the GNSS PRO signatures sufficiently large to be measured?
- Do they relate to [heavy] precipitation?
- Can the 'traditional' (thermodynamics) profiles be recovered from GNSS PRO data?
- How can these measurements be used in meteorology and climate studies?

RECEIENCIA MARÍA DE MAEZTU

Institute of Space Sciences

- Is it technologically possible to measure the polarimetric RO?
- Are the GNSS PRO signatures sufficiently large to be measured?
- Do they relate to [heavy] precipitation?
- Can the 'traditional' (thermodynamics) profiles be recovered from GNSS PRO data?
- How can these measurements be used in meteorology and climate studies?
- A proof-of-concept experiment aboard the Spanish PAZ satellite: Radio Occultation and Heavy Precipitation with PAZ (ROHP-PAZ)
- Modified IGOR receiver
- Agreements with NOAA and UCAR for dissemination in NRT of 'traditional' RO profiles
- Close collaboration with NASA/JPL for scientific investigations

PEXCELENCIA MARÍA DE MAEZTU

Institute of

Space Sciences

- Is it technologically possible to measure the polarimetric RO? YES
- Are the GNSS PRO signatures sufficiently large to be measured? YES
- Do they relate to [heavy] precipitation? YES
- Can the 'traditional' (thermodynamics) profiles be recovered from GNSS PRO data? YES
- How can these measurements be used in meteorology and climate studies? FOCUS OF STUDY
- A proof-of-concept experiment aboard the Spanish PAZ satellite: Radio Occultation and Heavy Precipitation with PAZ (ROHP-PAZ)
- Modified IGOR receiver
- Agreements with NOAA and UCAR for dissemination in NRT of 'traditional' RO profiles
- Close collaboration with NASA/JPL for scientific investigations
- PAZ launched in 02/2018
- ROHP-PAZ activated in 05/2018
- Continuous data acquisitions since then...
- Validation with NEXRAD polarimetric weather radars (see Poster!)

Visit https://paz.ice.csic.es

Power Flex issue fixed last week >240 daily profiles

Institute of

Space Sciences

PEXCELENCIA MARÍA DE MAEZTU

Institute of Space Sciences (ICE-CSIC, IEEC)

8th ROM SAF User Workshop 11-13/06/2024

- Is it technologically possible to measure the polarimetric RO? YES
- Are the GNSS PRO signatures sufficiently large to be measured? YES
- Do they relate to [heavy] precipitation? YES
- Can the 'traditional' (thermodynamics) profiles be recovered from GNSS PRO data? YES
- How can these measurements be used in meteorology and climate studies? FOCUS OF STUDY
- A proof-of-concept experiment aboard the Spanish PAZ satellite: Radio Occultation and Heavy Precipitation with PAZ (ROHP-PAZ)
- Modified IGOR receiver
- Agreements with NOAA and UCAR for dissemination in NRT of 'traditional' RO profiles
- Close collaboration with NASA/JPL for scientific investigations
- PAZ launched in 02/2018
- ROHP-PAZ activated in 05/2018
- Continuous data acquisitions since then...
- Validation with NEXRAD polarimetric weather radars (see Poster!)

Visit https://paz.ice.csic.es

Power Flex issue fixed last week >240 daily profiles

Institute of

Space Sciences

PEXCELENCIA MARÍA DE MAEZTU

Institute of Space Sciences (ICE-CSIC, IEEC)

8th ROM SAF User Workshop 11-13/06/2024

• In addition to PAZ, since 2023 there are **3 other LEOs** equipped with GNSS PRO payload: Spire Global, **commercial GNSS PRO**

EXCELENCIA MARÍA DE MAEZTU

Institute of Space Sciences

Clusters of GNSS PRO

- Given the capacity for multiple simultaneous GNSS PRO profiles, clusters of measurements are possible across interesting events
- **3-LEO** system also permits **clusters**

RECEIENCIA MARÍA DE MAEZTU

Institute of

Space Sciences

Institute of Space Sciences (ICE-CSIC, IEEC)

GNSS PRO in NWP

- How can these measurements be used in NWP?
 - Data Assimilation \rightarrow need of a Forward Operator
 - **Diagnosis Tool** \rightarrow check assumptions made by the NWP models (microphysics, particles...)

11

GNSS PRO in NWP

- How can these measurements be used in NWP?
 - Data Assimilation \rightarrow need of a Forward Operator
 - Diagnosis Tool → check assumptions made by the NWP models (microphysics, particles...)
 Second part

of this talk

First part

GNSS PRO Forward Operator CURRENT STATUS

The GNSS PRO observable is the accumulated polarimetric phase shift:

$$\Delta \Phi = \int_{L} K_{\rm dp} dL$$

Where Kdp is the specific differential polarimetric phase shift (per km)

Kdp comes from the **forward scattering** off **non-spherical hydrometeors** along the radio-link.

Bringi & Chandrasekar 2001, for polarimetric weather radars, suggested:

$$K_{dp} = \kappa wc \rho_{eff} (1 - ar)$$

GNSS PRO Forward Operator CURRENT STATUS

Approach validated in Padullés et al., 2021 doi: 10.1109/TGRS.2021.3065119

What are the right values for ρ_{eff} and ar in $K_{dp} = \kappa \ wc \ \rho_{eff} \ (1 - ar)$?

- 'EFFECTIVE' APPROACH: a set of values for type of hydrometeor (rain/snow/ice/...)
- PARTICLE APPROACH: compute the forward scattering solution for each hydrometeor particle shape, then one obtains

$$K_{dp}^{part.} = X^{part.} W c^{part.}$$

PEXCELENCIA MARÍA DE MAEZTU

Institute of

Space Sciences

GNSS PRO Forward Operator CURRENT STATUS

What are the right values for ρ_{eff} and ar in $K_{dp} = \kappa WC \rho_{eff} (1 - ar)$?

- <u>'EFFECTIVE' APPROACH</u> a sot of (rain/snow/ice/...)
- PARTICLE APPROACH: compute th hydrometeor particle shape, then on

 $K_{dp}^{part.} = X^{p}$

ADVANTAGES: Less dependent on assumptions

DISADVANTAGES: Is it accurate enough? Is it consistent with other NWP modules? ch

GNSS PRO Forward Operator CURRENT STATUS

What are the right values for ρ_{eff} and

 'EFFECTIVE' APPROACH: a set of (rain/snow/ice/...)

<u>PARTICLE APPROACH</u>: compare the hydrometeor particle shape, then on

ADVANTAGES: Consistent with other modules of the NWP model (RTTOVS/CRTM...)

DISADVANTAGES: More dependent on assumptions

$$K_{dp}^{part.} = X^{part.} W c^{part.}$$

Particle scattering

• RTTOVS is based on particles' shapes as given by ARTS

 Under ROM SAF CDOP4, we are computing X^{part.} for each of the ARTS/RTTOVS hydrometeor particles

• <u>GOAL</u>: to provide a LUT to forward model GNSS PRO **consistently** with other modules of the NWP modules

Eriksson, et al., 2018 doi:10.5194/essd-10-1301-2018 Ekelund et al., 2020 doi:10.5281/zenodo.4646605

What does it contain?

Particle shapes (both pristine and aggregates)

(a) Evans snow aggregate

(e) Large/small block

aggregate

(i) GEM hail

(m) GEM graupel

(c) 8-column aggregate

(g) ICON hail

Institute of

Space Sciences

EXCELENCIA

MARÍA DE MAEZTU

(d) Large/small column aggregate

(h) ICON snow

(b) Tyynelä dendrite

(f) Large/small plate aggregate

(n) Liquid sphere

(k) Spherical graupel

(1) ICON graupel

(i) GEM snow

Institute of Space Sciences (ICE-CSIC, IEEC)

Eriksson, et al., 2018 doi:10.5194/essd-10-1301-2018

Ekelund et al., 2020 doi:10.5281/zenodo.4646605

What does it contain?

- Particle shapes (both pristine and aggregates)
- Single scattering properties of those particles for different frequencies: (in GHz) 1, 1.4, 3, 5, 7, 8, 9, 10, 13.4, 15, 18.6, 24, 31.5, 50.1, 57.6, 88.8, 94.1, 115.3, 122.2, 164.1, 166.9, 175.3, 191.3, 228.0, 247.2, 314.2, 336.1, 439.3, 456.7, 657.3, 670.7, 862.4, 886.4
- Scattering matrix, absorption vector and extinction matrix.
- Interface to extract other parameters and interact with RTTOV

Institute of

Space Sciences

Figure 12. Example extinction (a) and backscattering (b) efficiencies (Eq. 19) as a function of the size parameter (Eq. 4). Legends are valid across all panels.

From *Eriksson et al., 2018*

MARÍA DE MAEZTU

Eriksson, et al., 2018 doi:10.5194/essd-10-1301-2018

Ekelund et al., 2020 doi:10.5281/zenodo.4646605

What does **NOT** contain?

- The scattering amplitude matrix (f) at forward and tangential to Earth surface geometry (i.e. RO geometry)
- <u>**f** is needed for computing the specific differential phase shift (Kdp)</u> to obtain the PRO observable $\Delta \phi$

$$K_{dp} = \frac{\lambda^2}{2\pi} \int \Re \left\{ f_H(D) - f_V(D) \right\} N(D) dD$$

What we have done:

- Particle shapes from ARTS database:
 - Force maximum possible horizontal orientation
 - Run Discrete Dipole Approximation (DDA), using ADDA implementation, for horizontal orientation and averaging over azimuthal rotation, using forward scattering geometry, and L-band frequency \rightarrow this provides f
 - Store the **f** for every shape and every size of the different particles
- Once we have the **f**, and using the mass of each particle and particle size, we can compute the bulk properties:
 - Using the particle size distribution N(D), we can obtain Kdp and WC
 - We have used a set of <u>realistic gamma sized N(D)</u> to generate all possible plausible Kdp – WC relationships

What we have done: SINGLE PARTICLE/AGGREGATE RESULTS for 'f'

Institute of Space Sciences (ICE-CSIC, IEEC)

Institute of **ARTS Microwave Single Scattering Properties** MARÍA DE MAEZTU **Space Sciences Database**

What we have done: wc to Kdp relationship -- using sets of realistic ~100k N(D)

So, now we have:

- Single scattering properties of those particles for different frequencies: (in GHz) 1, 1.4, 3, 5, 7, 8, 9, 10, 13.4, 15, 18.6, 24, 31.5, 50.1, 57.6, 88.8, 94.1, 115.2, 122.2, 164.1, 166.9, 175.3, 191.3, 228.0, 247.2, 314.2, 336.1, 439.3, 45, 862.4, 886.4
- Scattering matrix, absorption vector, extinction matrix at <u>nadir looking geometry</u>, and **f** at **L-band**, forward scattering in **RO geometry**, for the same particles.
- This ensures consistency among different DA / RT / GNSS PRO communities
- This ensures consistency among RT and GNSS PRO modules in NWP models

GNSS PRO FO

MARÍA DE MAEZTU

Space Sciences

GNSS PRO in NWP

- How can these measurements be used in NWP?
 - Data Assimilation \rightarrow need of a Forward Operator

- First part of this talk
- **Diagnosis Tool** \rightarrow check assumptions made by the NWP models (microphysics, particles...)

Institute of Space Sciences Space Sciences

Work with UCAR and NCU/Taiwan to use WRF with different microphysics \rightarrow Forward Model $\Delta \phi$ \rightarrow Compare to PAZ profiles (presented at 2nd PAZ GNSS PRO User Workshop, Pasadena, Nov'23)

Work with UCAR and NCU/Taiwan to use WRF with different microphysics \rightarrow Forward Model $\Delta \phi$ \rightarrow Compare to PAZ profiles (presented at 2nd PAZ GNSS PRO User Workshop, Pasadena, Nov'23)

RECEIENCIA MARÍA DE MAEZTU

Institute of

Space Sciences

Work with UCAR and NCU/Taiwan to use WRF with different microphysics \rightarrow Forward Model $\Delta \phi$ \rightarrow Compare to PAZ profiles (presented at 2nd PAZ GNSS PRO User Workshop, Pasadena, Nov'23)

RECELENCIA MARÍA DE MAEZTU

Institute of Space Sciences

We are now trying to implement a similar approach but using particle-scattering derived Kdp instead of effective density and axis ratio values

WRF is being run for a series of RO events in the northern-east Pacific

- Regions where Atmospheric Rivers tend to happen
- Phenomena with larger part of stratiform rain than Tropical Cyclones
- More spatial homogeneity, less sensitive to exact positioning of the weather events than Tropical Cyclones

For each case, four different microphysics schemes are used: Goddard, Thomson, WSM-6, Morrison

Different set of particles for each kind of hydrometeor, e.g.:

- Snow: 'IconSnow_Id28', 'GemSnow_Id32', 'EvansSnowAgg_Id1', 'HongAggregate_Id8', 'TyynelaFernDendAgg_Id26', 'HexPlaAggCrystal, 'LiuThickPlate_Id15', 'LiuThinPlate_Id16', 'HongPlate_Id9', 'LiuSectorSnowflake_Id3'
- Ice: 'GemCloudIce_Id31', 'IconCloudIce_Id27', 'HexColAggCrystal_Id21'
- Graupel: 'LiuBlockColumn_Id12', 'LiuShortColumn_Id13', 'LiuLongColumn_Id14', 'HongColumn_Id7'

Work in progress, a case example shown: PAZ1.2021.071.18.28.G27

Institute of Space Sciences Space Sciences

PRO as Diagnosis Tool

Conclusions

- **Polarimetric RO** experiment aboard PAZ + 3 commercial (Spire) CubeSats
- Ongoing studies to exploit the use of **GNSS PRO for and in NWP**:
 - DA → forward operator:
 - Already tested using hydrometeor 'effective' density and axis ratio: Kdp(wc; rho, ar)
 - Developing relationships based on L-band forward scattering off <u>ARTS particles</u>: Kdp(wc; particle, N(D)) → consistency between RT modules in NWP (e.g., RTTOVS)
 - **DIAGNOSIS** → Examples shown based on WRF simulations
 - Sensitivity to microphysics schemes: Goddard scheme gets best agreements with PAZ in a few TC studied cases
 - Sensitivity to microphysics schemes and particle shapes: one AR-like case shown, Goddard scheme gets best agreement for a particular combination of particles.

EXCELENCIA MARÍA DE MAEZTU