

Assimilation of Radio Occultation Bending Angles in a Global Ionospheric Model

Sean Elvidge, Sean Healy, Ian Culverwell, David R. Themens

8th EUMETSAT ROM SAF Workshop on GNSS RO Measurements June 12, 2024

Requirement for ionospheric modelling

- Many communication and navigation systems are affected by the ionosphere
	- Global Navigation Satellite Systems: GPS, Galileo, … (PNT)
	- Precise Point Positioning (PPP), e.g. convergence times
	- **HF** (e.g.):
		- Military and governmental communication systems
		- Aviation air-to-ground communications
		- Over the horizon radar (OTHR)
		- Amateur radio
		- Maritime services
- Median models are useful for planning
- But high-fidelity environmental specification, coupled with real time forecasting, is required to provide new functionality

Photo: Rockwell Collins

Requirement for thermospheric modelling

- Collision avoidance among orbiting satellites has become a routine task in space operations
- In Low Earth Orbit (LEO; < 2,000 km) the largest unknown in orbit determination is atmospheric drag
- Impacts on
	- Orbital propagation
	- Collision avoidance
	- Re-entry prediction
	- Lifetime estimation

UNIVERSITY^{of} **BIRMINGHAN**

Monthly Effective Number of Objects in Earth Orbit

SERENE's Upper Atmosphere Models

- **AENeAS**
	- The Advanced Ensemble Networked \bullet **Assimilation System**
- E-/A-CHAIM
	- The Empirical/Assimilation Canadian \bullet **High Arctic Ionospheric Model**
- **AIDA**
	- The Advanced Ionospheric Data \bullet **Assimilation model**

AIDA Ultra Rapid v1.0 - 2024/06/10, 10:20:00 (UTC)

13.5 18.0 22.5

> 6.0 7.5 9.0

foF2 (MHz)

MUF3000 (MHz)

27.0

 31.5

 10.5 12.0

36.0

13.5

EREN

AENeAS

- A realtime upper atmosphere data assimilation model
	- Based on solving the underlying physics of the system and fusing with observations
	- Variant of the ensemble Kalman filter (LETKF)
- Provides:
	- Probabilistic nowcasts and forecasts (with uncertainties)
		- Not necessarily Gaussian
	- Runs operationally at UK Met Office (output available from Q4 2024)

altitude

Neutral temperature at model "lid"

E-/A-CHAIM

- E-CHAIM:
	- Empirical model of high latitude (> 50˚N geomagnetic latitude) ionospheric electron density
	- Primarily climatology, but also includes intermediate timescale variability (1 to 30 day-timescale variations)
	- Includes electron precipitation, D-Region, Solar Energetic Protons (PCA)
	- Openly available source code: [http://e](http://e-chaim.chain-project.net/)[chaim.chain-project.net/](http://e-chaim.chain-project.net/)
	- Designed to support Over-the-Horizon Radar (OTHR) and HF radio propagation operations at high latitudes.

- A-CHAIM:
	- Auxiliary particle filter data assimilation scheme that uses E-CHAIM as its background model.
	- Freely available output: [https://a](https://a-chaim.chain-project.net/)[chaim.chain-project.net/](https://a-chaim.chain-project.net/)
	- System run every hour. Reanalysis of last three hours and two hour forecast.

AIDA

- Global particle filter which uses NeQuick as its background model
	- Model state space built using the parameterized vertical structure, with spherical harmonics for the horizontal perturbations makes it relatively small

40 9.0 13.5 18.0 22.5 27.0 31.5 36.0 VTEC (TECu) MUF3000 (MHz) 260 320 380 410 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 290 350 440 hmF2 (km) foF2 (MHz) SERENÉ

AIDA Ultra Rapid v1.0 - 2024/06/10, 10:20:00 (UTC)

serene.bham.ac.uk

AIDA - May '24 Storm

2024-05-10 00:00

2024-05-10 00:00

MUF Depression

TEC

Observations Used by the Models

- **Electron density**
	- Slant TEC (STEC) from GNSS satellites
	- Vertical TEC (VTEC) from altimeter satellites
	- Vertical profiles from ionosondes (true heights)
		- [Over 30 million observations used to build empirical model]
	- Radio Occultation
		- $\delta \mathcal{S} \mathcal{T} \mathcal{E} \mathcal{C} / \delta a$ (bending angle difference) assimilation
		- [Over 1 million observations used for empirical model]
- Total neutral density
	- From CHAMP/GRACE/Swarm (processed)
	- Two-line elements (derived)

Observations Used by the Models

- **Electron density**
	- Slant TEC (STEC) from GNSS satellites
	- Vertical TEC (VTEC) from altimeter satellites
	- Vertical profiles from ionosondes (true heights)
		- [Over 30 million observations used to build empirical model]
	- **Radio Occultation**
		- **δSTEC/δα (bending angle difference) assimilation**
		- **[Over 1 million observations used for empirical model]**
- Total neutral density
	- From CHAMP/GRACE/Swarm (processed)
	- Two-line elements (derived)

E-CHAIM: Radio Occultation Data

- CHAMP, GRACE, and COSMIC GPS Radio Occultation electron density profiles
- Gathered all profiles from above $45N$ geomagnetic latitude $(\sim 1,000,000$ profiles)
- Profiles with negative values anywhere above 100 km are discarded
- Noise-dominant profiles are identified and removed by evaluating RMS errors with respect to a fitted Vary-Chap profile
- Profiles with multiple maxima are removed

- TEC is the most used observation in ionospheric data assimilation models
- Biggest challenge when assimilating TEC is to estimate the differential code biases (DCBs)
	- Pseudorange observations are affected by signal and frequency dependent biases
	- Whilst CODE (Center for Orbit Determination in Europe) provides some estimated DCBs, in general these have to be solved for in the data assimilation scheme

- TEC is the most used observation in ionospheric data assimilation models
- Biggest challenge when assimilating TEC is to estimate the differential code biases (DCBs)
	- Pseudorange observations are affected by signal and frequency dependent biases
	- Whilst CODE (Center for Orbit Determination in Europe) provides some estimated DCBs, in general these have to be solved for in the data assimilation scheme
- It has been shown that the derivative of TEC, with respect to the impact parameter, $(\delta \text{STEC}/\delta a)$, can be used in a 1D-Var scheme for retrieval of profiles from RO observations

Example Assimilation in AENeAS

- Assimilation of COSMIC RO bending angles in AENeAS using three different approaches:
	- 1. COSMIC provided DCBs
	- 2. DCBs estimated in Kalman Filter state vector
	- 3. Assimilation without DCBs $(\delta \text{STEC}/\delta a)$

AENeAS output difference maps (NmF2)

AENeAS output difference maps (NmF2)

Thanks to David Themens for hand scaling the ionosondes

Thanks to David Themens for hand scaling the ionosondes

Our Next Steps with RO

• Formally include $\delta \text{STEC}/\delta a$ assimilation in AENeAS (more than just this simple example!), undertake statistical validation compared to alternative methods

Our Next Steps with RO

- Formally include $\delta \text{STEC}/\delta a$ assimilation in AENeAS (more than just this simple example!), undertake statistical validation compared to alternative methods
- Routine assimilation of near-realtime RO in AIDA
	- Ultra-Rapid: 5 mins
	- Rapid: 90 minutes

Our Next Steps with RO

- Formally include $\delta \text{STEC}/\delta a$ assimilation in AENeAS (more than just this simple example!), undertake statistical validation compared to alternative methods
- Routine assimilation of near-realtime RO in AIDA
	- Ultra-Rapid: 5 mins
	- Rapid: 90 minutes
- Magnetospheric Multiscale (MMS) Mission
	- Perigee: 2,550 km
	- Apogee: 70,080 km / 152,900 km
	- GPS through entire orbit
		- Potential unprecedented data of plasmasphere

