

8th EUMETSAT ROM SAF user workshop on GNSS radio occultation measurements

1D Var Ionospheric Electron Density Retrieval – Analysis and Problematic Cases

Ishita Gulati

Space Weather Research Scientist Met Office, United Kingdom

Outline

- Introduction
 - 1D Var for Ionospheric Electron Density Retrieval
 - Current experiment and QC
- Analysis of RO profiles using 2 and 3 layers
 - Plots of good and bad retrievals
 - Comparison of metadata statistics

- Validation with ionosonde measurements
- Summary and Future work

Picture credits: Hans Gleisner

Met Office **1D Var for Ionospheric Electron Density Retrieval**

- Under ROMSAF, the ROPP code has been developed as 1D ionospheric ED retrieval systems for Metop-SG to retrieve the parameters for a multi-layer Vary-Chap model.
- Involves adjusting a state vector, x, to minimise the cost function:

$$J(\mathbf{x}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}_b)^{\mathbf{T}} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_b) + \frac{1}{2} (\mathbf{y} - H(\mathbf{x}))^{\mathbf{T}} \mathbf{R}^{-1} (\mathbf{y} - H(\mathbf{x}))$$

where,

- xb is the a priori estimate of the state
- y is the vector of observations Bending angles
- H is the forward operator, mapping parameters in x to the observation space and
- B and R are the a priori and observation error covariance matrices, respectively.
- **Purpose**: The goal of the 1D-Var method is to find the state x that minimizes the cost function J(x) and compute the $(\alpha_2 \alpha_1)$ using the forward operator by adjusting the parameters to the best fit.

Met Office What does a good retrieval mean?

- Ionospheric density profile for 01/08/2020 recreated from Healy (2023) using the ROPP code and MetOp data
- α_1 = Bending Angle at f1 (1575.42 MHz)
- α_2 = Bending Angle at f2 (1227.60 MHz)
- Consistency check (Bending Angle uncertainty estimate) using:

$$\alpha_2 - \left(\frac{f_1}{f_2}\right)^2 \alpha_1$$

- 2J/m = scaled cost function
- n_iter = number of iterations required

Met Office Current experiments and QC criterion

- Observation Data: Covering RO profiles from 16/07/2020 26/08/2020 with about 550 occ/day total of ~24k profiles
- 1. Baseline: ROPP 11 for 2 layers: Active region 150-500 km
- 2. Updated: ROPP 11 for 2 layers: Active region 150-500 km, accounting for:
 - Missing data > 900 µrad
 - Large uncertainty errors >10 μrad
- 3. Updated ROPP 11 for 3 layers: Active region 100-500 km
- Current QC based on *n_iter*, 2J/m, consistency check

ANALYSIS OF RO PROFILES USING METOP EXTENSION DATA

Met Office Performance Analysis of ROPP-11 Improved 2 layer/3 layer

3 layers

2 layers

	time	lat	lon	n_iter	J_scaled		filedate_occultation_start	lat	lon	n_iter	J_scaled
count	23990	23990.000000	23990.000000	23990.000000	23990.000000	count	23983	23983.000000	23983.000000	23983.000000	23983.000000
mean	2009-04-01 00:03:34.552620544	-0.648416	-0.098468	12.120800	5.163855	mean	2020-08-05	-0.660669	-0.122742	14.052370	4.646886
min	2009-04-01	-89 587852	-179 994827	3.000000	0.00000	0 min	12:20:09.789058816	0.000000	0.1227 12	1 11002070	
	00:03:34.552620	001007002	1701001027	5.000000	0.000000		2020-07-16 00:00:42	-89.587900	-179.995000	3.000000	0.000000
25%	2009-04-01 00:03:34.552620032	-42.543309	-91.330755	9.000000	0.171305	25%	2020-07-25	-42.553150	-91.340000	10.000000	0.374524
50%	2009-04-01	-1.954315	-1.812766	11.000000	0.612260	0 50%	22:31:11.500000				
2070	00:03:34.552620032	1.00 1010	1012700	11.000000	01012200		2020-08-05 02:12:20	-1.997680	-1.833800	13.000000	1.044980
75%	2009-04-01 00:03:34.552620032	41.710363	91.282291	14.000000	2.538811	75%	2020-08-16 12:14:26	41.705250	91.223200	17.000000	2.817690
max	2009-04-01 00:03:34.552620	89.700485	179.998032	50.000000	1604.221069	max	2020-08-26 23:33:14	89.700500	179.998000	50.000000	2103.040000
std	NaN	47.703881	104.653964	5.594209	27.611596	std	NaN	47.702923	104.642535	6.233055	23.116940

Improvement in the 2J/m mean value from ROPP 11 baseline is almost 91% and that from new baseline is 10.01% which is significant.

Case 1: ROPP 11 baseline vs improved

2 layer_ROPP 11 baseline

2 layer_improved

Met Office Case I: Improved metadata with 3rd layer

2 layer_improved

3 layer_improved

Case II: Negative hmF2

62 profiles with negative hmF2!

Bangle weights==1: 351 Percentage of bangles being used: 100.00% Bangle weights==1: 114 Percentage of bangles being used: 28.43%

Case III: max hmF2>1300 km

- An absolutely 'normal' looking profile
- Passes the current QC checks \checkmark
- Probably an outlier, with hmF2>1300 km
- 1d var does not generate a solution

The log file... J = NaN

WARNING (from ropp_1dvar_levmarq_dbangle):	Levenberg-Marquardt solver returns ne_peak <= 0 resetting to 1% of background error.				
n_iter = 10 J = 6729.6	lambda -> 10.000				
WARNING (from ropp_1dvar_levmarq_dbangle):	Levenberg-Marquardt solver returns ne_peak <= 0 resetting to 1% of background error.				
n_iter = 11 J = 5917.7 n_iter = 12 J = NaN n_iter = 13 J = NaN	<pre>max(relative change in state) = 1.0000 max(relative change in state) = 1.0000 max(relative change in state) = 1.0000</pre>				
INFO (from ropp_1dvar_levmarq_dbangle): Convergence assumed to be achieved as the cost function did not change by more than 0.10000 for the last 2 iterations.					
INFO (from ropp_1dvar_levmarq_dbangle): Finished after 13 iterations (20 forward model / gradient evaluations).					
<pre>INFO (from ropp_1dvar_levmarq_dbangle): Scaled solution cost function 2J/m = 3.372E+01.</pre>					
(from ropp_ldvar_diagnostics): Warning: 2J/m greater than 5.000. (niter = 13; 2J/m = 33.719) INFO (from ropp_ldvar_dbangle): Analysis VTEC = 52.635 TECU.					

34 more cases with J= NaN for 3 layers ~ 0.14%

Case III: 3 layer analysis

Bangle weights==1: 351 Percentage of bangles being used: 100.00%

Bangle weights==1: 401 Percentage of bangles being used: 100.00%

Other problematic cases

Criterion	ROPP 11 baseline	ROPP 11 improved_3 layer
Convergence is unlikely <i>lambda_max</i> = 1.0E10_wp	1 case - Ropp 11 baseline_3 layer	-
iterations without achieving convergence N_iter = 50	_	40/23990 -0.166%
N_iter>=45	-	66 cases
J=NaN	18 cases - Ropp 11 baseline_2 layer	34 cases
hmF1 or hmF2 <100 km	1076 cases – ROPP 11 baseline 2 layer	tbc

Met Office 2 layers – 3 layers Comparison Summary Diagnostics

Parameter	ROPP 11 baseline_2 layer 1 day	ROPP 11 updated_3 layer Full dataset
Mean 2J/m	7.9	4.647
2J/m>10	69 cases	1940 cases
Largest 2J/m	882	2103
N_iter>=40	9	139
% of problematic retrievals	15	8.66

VALIDATION WITH IONOSONDE MEASUREMENTS (PRELIMINARY)

Ionosonde validation

- To validate RO data with ionosonde data to ensure that both measurement techniques provide consistent and accurate information about the ionospheric parameters.
- Improved accuracy and validation of observational data contribute to better predictions of ionospheric behaviour.
- Total 24k RO observations to collocate with ionosonde observations
- 52 unique ionosonde locations: Within 350 km and 2 hr we have 656 co-located occultations

Colocation criteria Dist/time/# of colocations	2hr	3 hr	4 hr
300 km	479	479	482
350 km	656	659	662

Nm and hm Correlation Plots

Summary and Future Work

- ROPP 11 ionospheric 1d var code has been successfully used to retrieve the ED profiles using MetOp A data that provides BA up to 600 km using2 and 3 layers.
- Only 8.66% of the total observations fail to converge in 50 iterations which does look like a good step forward
- Adding additional layers improves the performance of the 1d var
 - Next step: Improve the QC and test with 4 layers
- Validation of 1D var RO observations against Truth data co-located Ionosonde retrievals WiP
- Comparison with AVHIRO-2 model (coming soon!)

Thank you for your attention!

Abstract submission OPEN for

UK Space Weather & Space Environment Meeting II: Celebrating 10-years of 24/7 space-weather operational forecasting in the UK

Deadline: 14 June'24