Current Status of GNOS Data Processing at CMA

Mi Liao1, Guanglin Yang1, Congliang Liu 2, Xiangguang Meng2, Weihua Bai2, Qifei Du2 1 National Satellite Meteorological Center, CMA 2 National Space Science Center, CAS

01 Current FY3 RO

- **02 Data Processing status**
 - 03 Future plans
 - 04 Conclusions

1. Current FY3 RO

- The first RO sounder loaded on FY3C was launched in 2013, ended in 2024 25th March
- FY3C/3D GNOS
- FY3E/3F/3G GNOS-II

21 satellites, Two generations and Four types

9 FengYun satellites on duty

• FY-3D 2017 launched.

• FY-3E was successfully launched on July 5, 2021, which is world's first meteorological satellite in early morning orbit for civil service

• FY-3G launched on Apr.16 2023, is the first precipitation measurement satellite of the FY-3 series, operates in a non sunsynchronous orbit at a 50° inclination angle

• FY-3F launched on Aug.3, 2023 is the latest member of FengYun Constellation, replace with FY-3C.

Four different orbits

CMA/NSMC

parameters	FY-3D	FY-3E	FY-3G	FY-3F	
Physic parameters	BA, ref, T,P,Vp, EDP	P,Vp, EDP BA, ref, T,P,Vp, EDP, sea surface wind			
Constellation	GPS L1,L2;BDS B1 B2	GPS L1,L2;BDS B1 B2a	GPS L1,L2 ; BDS B1,B2a <mark>;</mark> GAL: E1	as FY-3G	
Channels	14 for pos; 12 for occ.	24 for pos. ; 20 for occ.	28 for pos; 24 for occ.	as FY-3G	
Clock stability	5e-12				
Pseudo-range precision	L1CA:10.5cm;L2C:15.5cm; L2P: 10.6cm	L1CA:8.2cm;L2C:7.4cm;L P: 7.4cm;B1:6.7cm;B3 :3.9cr	2 L1CA:8.0cm; L2C:7.3cm L2P: 7.4cm ;B1:6.1cm B3 :3.0cm	as FY-3G	
Carrier phase precision	LB1-B2 :0.51 mm; L1CA- L2C:0.41mm; L1CA- L2P:0.2mm	B1-B3 :0.717 mm; L1CA- L2C:0.733mm; L1CA- L2P:0.504mm	B1-B3 :0.806 mm; L1CA- L2C:0.349mm; L1CA- L2P:0.924mm	as FY-3G	
PCV of POD antenna	Less than 2mm	Less than 2mm	L1:0.56mm; L2:0.76mm B1:0.61mm; B3:0.57mm	as FY-3G	
Beam width of atm. occultation antenna	≥±40°				
antennas	1for POD, 2 for Occ. 2 for eletron.	2 for POD, 2 for Occ. 2 fo eletron. 1 for reflec.	r 1for POD , 2 for Occ. 2 for eletron. 1 for reflec.	as FY-3G	
Sampling rate	POD:1 Hz;Electron: 1 Hz; Close loop: 50Hz; Open loop:100Hz				
Reflective Frequency	I	GPS L1; BDS B1	GPS L1; BDS B1; GAL; E1	as FY-3G	
Reflective antenna gain	1	≥15dBi			
Reflective channels	Ι	GPS 4; BDS 4	GPS 3; BDS 4; GAL 1	as FY-3G	
Code resolution	1	GPS:1/8: BDS:1/8	GPS:1/8: BDS:1/8: GAL:1/8	as FY-3G	

2. Data processing status --- neutral RO

- Single difference technics for obtaining excess phase (GPS/BDS)
- Geometric optics (above 15 km)
- Wave optics (below 15 km)
- Dual frequency combination (GPS/BDS)
- Single frequency (Galileo)
- Statistical optimization (MSISE-90)
- L2 extrapolation(GPS)
- Abel integral (linear variation)
- 1D-VAR using CMA-GFS as BG

MA/NSMC

- Based on refractivity profiles, the kick like in the Ref. statistics is not obvious, which is probably obscured by the vertical intervals.
- Wave Optics starting height setting from 25km to 8km, showing smaller std in the range of 15-25km.

2. Data status --- FY3F

100

200

300

ARPERAS'/(N)

400

500

FY3 GNOS DAILY OCC. LOCATIONS

Spatial Distribution of ARP Difference between FY-3F/GNOS-II and ERA5 on 10 Mar 2024

2. Data status --- FY3G

✤ Latest progress:

CMA/NSMC

- Due to non sun-synchronous orbit at a 50° inclination angle, FY3G RO events distribute within the range of 60 degrees north and south latitude.
- BDS radio occultation improved above 35km, due to better BDS-3 signal (more RO events and higher quality)

2. Data status --- Cross validation

- ✤ Latest Progress:
 - Compared to MetOp and COSMIC2, GNOS performs similarly below 30km
 - From FY3D to FY3E/3G, the standard deviation gets small above 30km, but still bigger than MetOp and COSMIC
 - Join ROMEX mission to explore more technical

(B-O)/O [%] N-unit Bias and Std

2. Data processing status --- Electronic RO

*** TEC-Calibrated algorithm inversion process**

$$TEC = rac{f_1^2 f_2^2}{Cig(f_1^2 - f_2^2ig)}(L_1 - L_2)$$

$$TEC_{BD} = TEC_{AD} - TEC_{AB} = 2TEC_{BC} = 2 \int_{r_0}^{r_{LEO}} rac{rN_e(r)}{\sqrt{r^2 - r_0^2}} dr$$

$$ext{TEC}(p) pprox 2N_{ ext{e}}(p_{ ext{max}}) \sqrt{2p_{ ext{max}}(p_{ ext{max}}-p)}$$

/A/NSMC

$$N_{
m e}(p_i) = rac{3}{4} rac{{
m TEC}(p_i)}{\sqrt{2p_i(p_{i+1}-p_i)}} - \sum_{k=1}^{n-i} c_{k,i} N_{
m e}(p_{i+k})$$

• EDP Inversion Algorithm

EDP Product Validation

Time-Space	Matching	condition:

1. The distance between the occultation tangent point and the ionosonde is <200 km 2. Observation time difference <30 min

NmF2 std < 20% vs. ionosonde

8th EUMETSAT ROM SAF user workshop—Reading, UK, 2024

NmF2	Bias	Std
NmF2(FY3C-GPS)	6.62%	18.39%
NmF2(FY3C-BDS)	8.31%	17.24%
NmF2(FY3D-GPS)	0.41%	18.19%
NmF2(FY3D-BDS)	0.56%	19.12%
NmF2(FY3E-GPS)	7.01%	18.19%
NmF2(FY3E-BDS)	8.21%	18.76%
NmF2(FY3G-GPS)	4.49%	16.31%
NmF2(FY3G-BDS)	3.74%	18.46%
NmF2(FY3F-GPS)	7.17%	16.13%
NmF2(FY3F-BDS)	5.49%	17.93%

NSMC CMA

CMA/NSMC

2. Data processing status --- Reflection(Ocean Surface Wind)

Ocean Surface Wind validation

Using ECMWF wind speed data valid FY3E/F/G

Average RMSE <1.5 m/s (wind speed below 20m/s)

2. Data processing status ---GNSS-R Land Soil Moisture

Land Soil Moisture Validation

3. Future plans

2025-2030 RO instruments will be

mounted on:

- > 2025: FY3H afternoon orbit
- > 2027: FY3I inclination angle orbit, like FY3G
- > 2028: FY3J early morning orbit, like FY3E

203X FY5:

- FengYun Plus conception
- > Small satellite constellation + reference satellite

- GNOS was affected by different FY3 satellite platforms, due to different platform characteristics.
- Radio occultation profiles, sea surface wind and soil moisture could be retrieved through GNOS-II observations.
- BDS RO is promising with its higher quality and quantity than before.
- RO sounding is standard configuration of FY3 and future FY5.

Thank you for your listening !