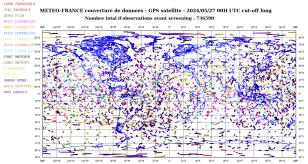


Fraternité

Recent developments on the assimilation of GNSS-RO in the Météo-France global and regional NWP models

Dominique Raspaud MÉTÉO-FRANCE/DESR/CNRM EUMETSAT ROM SAF User Workshop, Reading, 11-13 June 2024

- 1 Current assimilation of GNSS-RO data at Météo-France
- 2 Use of Spire commercial data in the global model
- 3 Prelimary results on the review of the GNSS-RO observation uncertainties
- 4 GNSS-RO data in the Météo-France high resolution model
- 5 Conclusion and prospect


- 1 Current assimilation of GNSS-RO data at Météo-France
- Use of Spire commercial data in the global model
- 3 Prelimary results on the review of the GNSS-RO observation uncertainties
- 4 GNSS-RO data in the Météo-France high resolution model
- 5 Conclusion and prospect

The use of GNSS-RO data at Météo-France

In the global 4D-Var data assimilation system ARPEGE

ho \simeq 700.000 data per 6-hour assimilation window (\sim 5% of the total observations)

- METOP, TERRASAR-X, TANDEM-X, GRACE-C
- Kompsat-5, FY-3D, Paz
- Cosmic-2, Sentinel-6
- SPIRE (EUMETSAT + NOAA contracts) processed by ROM SAF

GNSS-RO operational assimilation at Météo-France

In the global 4D-Var data assimilation system ARPEGE

- assimilation of bending angles up to 50 km
- use of the observed refractivity for additional QC (super-refraction check)
- rising/setting occultations
- 2D forward operator (since June 2022)
- tangent point drift taken into account
- anchor data for variational bias correction

- 1 Current assimilation of GNSS-RO data at Météo-France
- 2 Use of Spire commercial data in the global model
- 3 Prelimary results on the review of the GNSS-RO observation uncertainties
- 4 GNSS-RO data in the Météo-France high resolution model
- 5 Conclusion and prospect

Use of commercial data

SPIRE

- EUMETSAT contract : in operational use since 2023-Q1 (from ROM SAF)
 - ullet \sim 15 to 20% additional GNSS-RO data over globe in ARPEGE
 - · significant positive impact on the forecast skill
- NOAA contract : in operational use since March 2024 (from ROM SAF)
 - ~ 40% additional GNSS-RO data over globe in ARPEGE
 - · significant positive impact on the forecast skill

on the forecast skill (NH)

forecast scorecards against radiosondes and IFS analysis for Geopotential, Temperature, Wind and Humidity over NH for 2023/01:

	Ref.	Radiosondes	IFS Analysis
	Range	0H to 96H timstep 12H	0H to 102H timestep 6H
Geopotential	100hPa	* * * * * * * * *	*****
	500hPa	* * * * * * * * * * * * * * * * * * * *	= ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
	850hPa	* * * * * * !!!!!! =	▼= ▲▲▲▲▲▲▲▲▲▲▲▲
	1000hPa	* * * * * !!! * * !!!	** = * * * * * * * * * *
	100hPa	▼ ▲ ▲ ▲ ▲ = =	****
Temperature	500hPa	 ▲ ▲ ▲ = =	****
remperature	850hPa	= = = 🔺 🛦	****
	1000hPa	=== ====	*****
Wind	250hPa	===	****
	500hPa	= * * * * * !!!!!! =	****
	850hPa	====	****
Humidity	400hPa	==== ===	****
	700hPa	====	****
	850hPa		****

Improvement

Degradation

- significatively better with new obs. (99.5% confidence)
 significatively better (95% confidence)
- = no significant signal (95% confidence)
- significatively worse (95% confidence)
- ▼ significatively worse (99.5% confidence)

clear improvement for most parameters

on the forecast skill (SH)

forecast scorecards against radiosondes and IFS analysis for Geopotential, Temperature, Wind and Humidity over SH for 2023/01:

	Ref.	Radiosondes	IFS Analysis	
	Range	0H to 96H timstep 12H	0H to 102H timstep 6H	
	100hPa	= * * * * * !!!!!! =	**********	
Geopotential	500hPa	▼ ▼ ;;; = ▲ ;;; ▲ = ;;;	** = **	
	850hPa	::: = ::: = = = = ▲	****	_
	1000hPa	▼ = = ▼ = = = !!! ▲	▼= ▼ ;;;====;;;;;;;========	Improvement
Temperature 8	100hPa		****	(Improvement
	500hPa	A = A = = =	****	
	850hPa	==:::	****	Down detion
	1000hPa		= ===	(Degradation
Wind 50	250hPa		****	
	500hPa	::::	****	▲ significatively better with new obs. (99.5% confidence
	850hPa		****	significatively better (95% confidence)
Humidity	400hPa	::::	****	= no significant signal (95% confidence)
	700hPa		****	significatively worse (95% confidence)
	850hPa	====	****	▼ significatively worse (99.5% confidence)

clear improvement for most parameters (except geopotential above 100hPa)

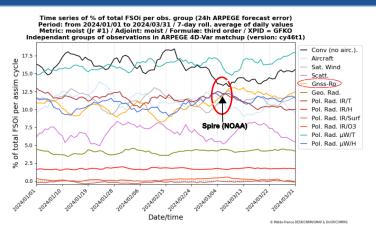
on the forecast skill (Tropics)

forecast scorecards against radiosondes and IFS analysis for Geopotential, Temperature, Wind and Humidity over Tropics for 2023/01:

	Ref.	Radiosondes	IFS Analysis
	Range	0H to 96H timestep 12H	0H to 102H timstep 6H
Temperature	100hPa	==!!!=====*!!!	*****
	500hPa		* * = = :::= = :::::::::= = ::: * ::
	850hPa	7 = = = A = = =	= ^ ^ ^ ^ ^ ^ ^
	1000hPa		- 4:::::= 4:::=-
	250hPa		****
Wind	500hPa		= =
	850hPa		== =
Humidity	400hPa		AA
	700hPa	:::	A A A A A
	850hPa		****

Improvement

Degradation

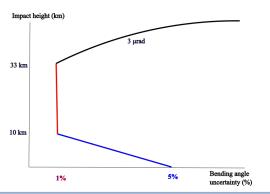

significatively better with new obs. (99.5% confidence)
 significatively better (95% confidence)
 no significant signal (95% confidence)
 significatively worse (95% confidence)

v significatively worse (99.5% confidence)

clear improvement for most parameters

on FSOi

clear increase of GNSS-RO contribution to FSOi



- 1 Current assimilation of GNSS-RO data at Météo-France
- 2 Use of Spire commercial data in the global model
- 3 Prelimary results on the review of the GNSS-RO observation uncertainties
- 4 GNSS-RO data in the Météo-France high resolution model
- 5 Conclusion and prospect

Current model of GPSRO observation uncertainties

current uncertainty model as a function of obsvalue (bending angle) and impact height

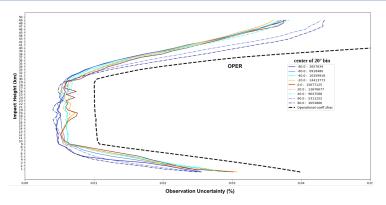
Review of the GNSS-RO observation uncertainties

Objectives and plans

- testing the sensitivity of our 4D-Var system to a variation of the GNSS-RO observation uncertainties
- If find the optimal value for the σ_0 in the current uncertainty model
- testing a new model of observation uncertainties depending on additional predictors:
 - satellite receiver
 - latitude
 - transmitting constellation
 - LSW (if available in the BUFR files)
 - synthetic parameter to take account of latitude, seasonal effect and atmospheric characteristics (integrated Temperature or \(\theta'_w \) or tropopause height)

Uncertainty estimates

Desroziers diagnosis by satellite receiver (Dec 2022-Jan 2023)



- $lue{}$ suggests to reduce the operational σ_o
- \blacksquare suggests the σ_o depend on satellite receiver

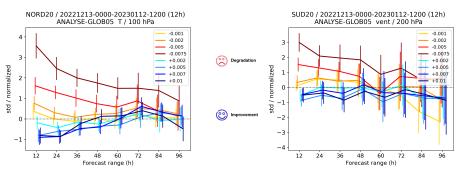
Uncertainty estimates

Desroziers diagnosis by 20° bins of latitude (Dec 2022-Jan 2023)

- \blacksquare suggests the σ_o depend on latitude
- \blacksquare high latitudes : diagnosed σ_o smaller below 30 km and greater in the stratosphere

Forecast sensitivity to GNSS-RO uncertainties

Synthetic scheme of tested σ_o within the current uncertainties model


- the same predictors (bending angle and impact height)
- the same breaking levels (0 / 10 / 33 km)

Tests on tuning the current error statistics

Synthesis of the results of a series of tests (Dec 2022-Jan 2023)

 normalised difference (exp-oper)/oper of the stdv of the forecast error (vs IFS analysis) for Temperature at 100hPa over NH20 (left) and Wind at 200hPa over SH20 (right)

- **deterioration** of the forecast skill when reducing σ_0 (short and medium range)
- improvement with increased σ_o (0 to 48h)

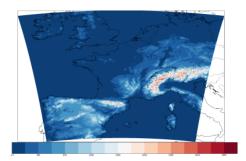
Attempts to validate our choice for σ_o

More forecast scores on winter and summer periods for a specific setting (ZFRAC1+0.005 / ZFRAC2+0.005)

forecast scorecards against radiosondes and IFS analysis for Geopotential, Temperature, Wind and Humidity over NH for Jan 2023 (left) and July 2023 (right):

	Ref.	Radiosondes	IFS Analysis
	Range	0H to 96H timestep 12H	0H to 102H timestep 6H
Geopotential	100hPa	A A A A A =	****
	500hPa	▲ ;;; ;;; = = = ;;; = =	<u> </u>
	850hPa		A;;;==;;;;;;;;==;;;;;======
	1000hPa		A A =
	100hPa		****
Temperature	500hPa		A::::::::= = = = :::::::::::::A:::::::=
remperature	850hPa		::::::::::::::::::::::::::::::::::::
	1000hPa		:
Wind	250hPa	::	======= A A ===
	500hPa	-:::::	A;;;A=;;;======;;;;;======
	850hPa	4	A A = A = = = = = A
Humidity	400hPa	-▼:::	AA
	700hPa		A A = = = = = = A A
	850hPa		:::::::::::::::::::::::::::::::::::

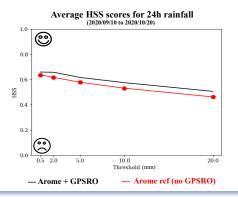
t) and July 2023 (right) :		
	Ref.	Radiosondes IFS Analysis
	Range	0H to 96H 0H to 102H timestep 12H timestep 6H
Geopotential	100hPa	- ▼ ▲▲▲▲▲▲
	500hPa	
	850hPa	= = = = = = = = = = = * *
	1000hPa	=
	100hPa	A = = = = = = A A A = = = = =
Temperature	500hPa	::::
remperature	850hPa	
	1000hPa	
Wind	250hPa	
	500hPa	::: <mark>-:::-::::::::::</mark>
	850hPa	
Humidity	400hPa	= = = = = = = A = A===== ===
	700hPa	-
	850hPa	- - v


- the improvement obtained in winter is not confirmed during the summer period
- no positive impact from any of the tested settings

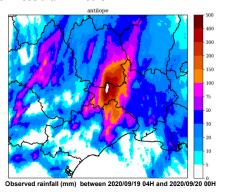
- 1 Current assimilation of GNSS-RO data at Météo-France
- 2 Use of Spire commercial data in the global model
- 3 Prelimary results on the review of the GNSS-RO observation uncertainties
- 4 GNSS-RO data in the Météo-France high resolution model
- 5 Conclusion and prospect

The Météo-France high resolution model AROME

- 3D-Var assimilation system
- 1 hour-assimilation window
- 8 runs a day (every 3 hours) up to 51h
- centered over France and Western Europe
- 1.3 km horizontal resolution

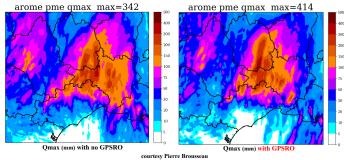

Assimilation of GNSS-RO in AROME

- operationally used in the high resolution model AROME since June 2022
- assimilation of the bending angles up to 10 hPa (highest level of the model)
- 1D observation operator
- few GNSS-RO data assimilated : < 0.5 % of the total number of observations used</p>
 - GNSS-RO data in \approx 50 % of the networks in average
 - 100 to 200 data by network in average


Slight positive impact on the forecast skills

- mainly neutral impact on large-scale parameters but slightly positive on temperature
- slightly positive impact on rainfall scores (summer and winter)

High precipitation event over the French Mediterranean area (2020/09/19)


■ ≈ 650 mm observed in less than 24 hours

High precipitation event over the French Mediterranean area (2020/09/19)

- 268 mm in AROME operational forecast (no GNSS-RO) of 2020-09-19 00h UTC
- "lagged-ensemble" approach : 2 ensembles with hourly forecasts, 27 runs each
 - 1 ensemble without GNSS-RO
 - 1 ensemble using GNSS-RO
- up to 414 mm with GNSS-RO data

- 1 Current assimilation of GNSS-RO data at Météo-France
- 2 Use of Spire commercial data in the global model
- 3 Prelimary results on the review of the GNSS-RO observation uncertainties
- 4 GNSS-RO data in the Météo-France high resolution model
- 5 Conclusion and prospect

Conclusion and prospect (1/2)

Use of new observations

- clear beneficial assimilation of SPIRE (NOAA) in the Météo-France operational global model with a significant positive impact on the forecast skills
- in progress : use of FY-3E

Review of the GNSS-RO observation uncertainties

- lacktriangle first results : current σ_0 should be increased
- tuning of the current model unsactisfactory till now

GNSS-RO in high resolution model

- few observations (a bit more with SPIRE)
- but able to provide interesting information on temperature in upper troposphere/lower stratosphere

Conclusion and prospect (2/2)

Planned work

review of super-refraction check in QC : assess the change from a control based on observed refractivity to a control based on refractivity from the model

Propects on innovative data

- work on PAZ GNSS-Polarimetric RO just began in collaboration with IEEC
- future work for the community : airbone radio-occultations

