

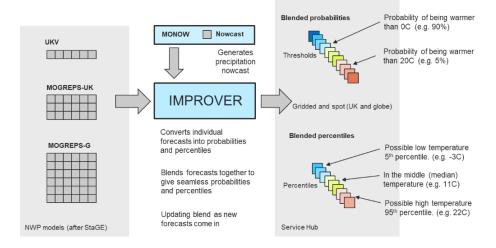
Processing ECMWF Ensemble Data for use in Met Office Systems

Simon Boardman

Senior Scientific Software Engineer

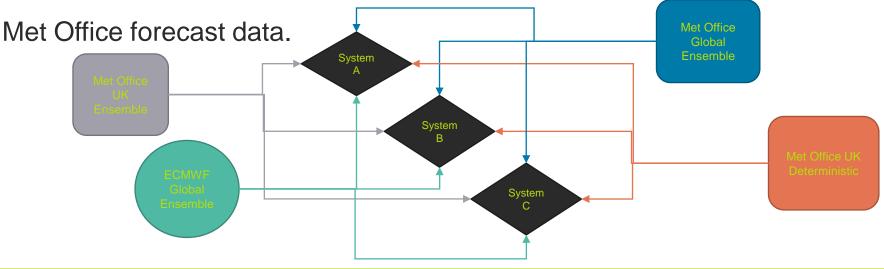
Verification, Impacts, and Post-Processing

www.metoffice.gov.uk

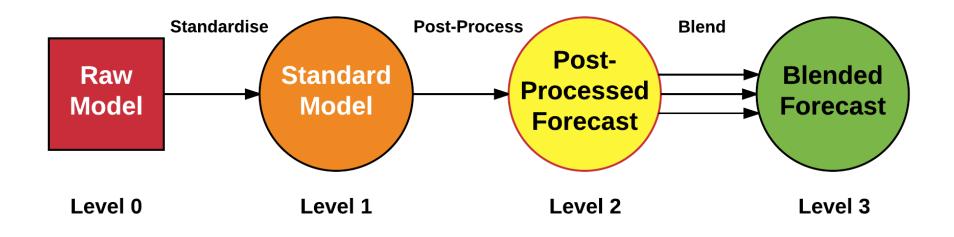

Outline

- Why do we want to utilise ECMWF ensemble data in the Met Office?
- Fitting ECMWF data into Met Office workflows; aims and issues.
- The software developed to solve these problems: StaGE.
- Next steps utilising ECMWF data in Met Office systems.

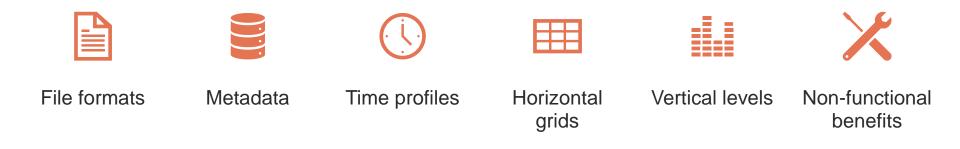
forecast period.


Why do we want to utilise ECMWF ensemble data in the Met Office?

• Improving blended probabilistic forecast offering; forecast skill and


Why do we want to utilise ECMWF ensemble data in the Met Office?

• Simplifying combination and comparison of ECMWF forecast data with



Met Office Data Processing Levels

What standardisations are required to fit into Met Office workflows?

File Format

Raw Model / Level 0

GRIB2 File S

	nx	ny	nz	nt	Field title	Field and dimension names		
0	: 1280	960	1	1	NET DOWN SURFACE SW FLUX : CORRECTED	Overall description:	Unified Model Output (Vnll.9):	
1	: 1290	963	1	1	DIRECT SURFACE SN FLUX : CORRECTED	overact bescription:	diffies Hoder output (Will.s):	
2	: 1290	960	1	1	DIFFUSE SURFACE SW FLUX : CORRECTED	Long field name:	LARGE SCALE SNOW AMOUNT KG/P	
3	: 1290	963	1	1	DUTGDING LW RAD FLUX (TOA)			
4	: 1290	960	1	1	LARGE SCALE RAIN AMOUNT KG/M2/TS	Short field name:	lssnow	
5	: 1280	960	1	1	LARGE SCALE SNOW AMOUNT KG/M2/TS			
6	: 1280	960	1	1	LARGE SCALE RAINFALL RATE KG/H2/S	Standard field name:	stratiform_snowfall_amount	
7	: 1280	960	1	1	LARGE SCALE SNOWFALL RATE KG/H2/S			
8	: 1280	963	1	1	ROUGHNESS LEN. AFTER B.L. (SEE DOC)	Field units:	kg n-2	
9	: 1280	960	1	1	10 METFE WIND U-COMP	x-dimension name:	longitude	
10	: 1280	961	1	1	10 METRE WIND V-COMP	X-dimension name:	rungztude	
11	: 1290	960	1	1	SUPFACE SENSIBLE HEAT FLUX W/M2	x-dimension units:	degrees east	
12	: 1200	960	1	1	SURFACE SENSIBLE HEAT FLUX W/M2			
13	: 1280	960	1	1	X-COMP OF SURF & BL WIND STRESS N/M2	x-dimension long name:	langitude	
14	: 1280	961	1	1	Y-COMP OF SURF & BL WIND STRESS N/M2			
15	: 1280	961	1	1	10 METRE WIND U-COMP B GRID 10 METRE WIND V-COMP B GRID	x-dimension standard name:	longitude	
16	: 1290	961 960	1	1				
17	: 1290		1	1	TEMPERATURE AT 1.5M SPECIFIC HUMIDITY AT 1.5M	y-dimension name:	latitude	
18 19	: 1290	960 960	1		SPECIFIC HUMIDELY AT 1.5M RELATIVE HUMIDELY AT 1.5M	v-dimension units:	degrees_north	
	: 1290	960	1	1	RELATIVE HURLDLTY AT 1.5M FOG FRACTION AT 1.5 M	y-aimension dhics:	juegrees_north	
20 21	: 1280		1	1	DEMPOINT AT 1.5H	y-dimension long name:	latitude	
21	1280	960	1	1	LOR VIRI AL 1/04 (K)		,	

Standardised Model / Level 1

			-
land_area_fraction / (1)	(latitude: 960; lon	gitude: 1280)	
Dimension coordinates:			
latitude	x		
longitude		х	
Scalar coordinates:			
forecast period: 0 secon	ds		
forecast reference time:	2020-01-15 00:00:00		
realization: 0			
time: 2020-01-15 00:00:0	0		
Attributes:			
Conventions: CF-1.7, UKM	0-1.0		
history: 2023-02-03T16:0	8:46Z: StaGE Decouple	r — mont	
institution: ECMWF		nei	CDF
mosg forecast run durat	ion: PT366H		
mosg grid domain: globa	ι		
mosg grid type: standar	d		
mosg grid version: 1.0.	0		
mosg model configuratio	n: ecgl ens		
source: ECMWF Integrated	Forecasting System		
	orecast on Global 20	km Standard Grid	

Metadata

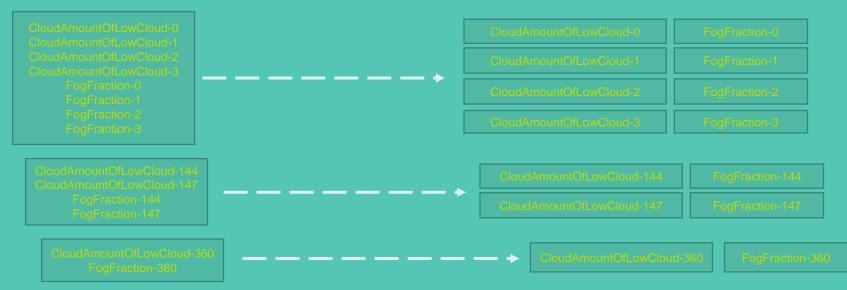
Raw Model / Level 0

GRIB {

editionNumber = 1: table2Version = 128;# European Centre for Medium-Range Weather Forecasts (common/c-1.table) centre = 98: generatingProcessIdentifier = 148; # 2 metre temperature (K) (grib1/2.98.128.table) indicatorOfParameter = 167: # Surface (of the Earth, which includes sea surface) (grib1/local/ecmf/3.table , grib1/3.table) indicatorOfTypeOfLevel = 1; level = 0: # Forecast product valid at reference time + P1 (P1>0) (grib1/local/ecmf/5.table , grib1/5.table) timeRangeIndicator = 0; # Unknown code table entry (grib1/0.ecmf.table) subCentre = 0;paramId = 167; #-READ ONLY- cfNameECMF = unknown: #-READ ONLY- cfName = unknown: #-READ ONLY- cfVarNameECMF = t2m; #-READ ONLY- cfVarName = t2m: #-READ ONLY- units = K; #-READ ONLY- nameECMF = 2 metre temperature; #-READ ONLY- name = 2 metre temperature;

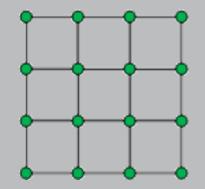
CF MetaData

Standardised Model / Level 1


dimensions: latitude = 960 : longitude = 1280 ; bnds = 2;variables: float land area fraction(latitude, longitude) ; land_area_fraction:standard_name = "land_area fraction" ; land area fraction:units = "1"; land area fraction:grid mapping = "latitude longitude" ; land area fraction:coordinates = "forecast period forecast reference time realization time" int latitude longitude ; latitude longitude:grid mapping name = "latitude longitude" : latitude longitude:longitude of prime meridian = 0. : latitude longitude:earth radius = 6371229. ; float latitude(latitude) ; latitude:axis = "Y" : latitude:bounds = "latitude bnds" ; latitude:units = "degrees north" ; latitude:standard name = "latitude" : float latitude bnds(latitude, bnds) ; float longitude(longitude) ; longitude:axis = "X" ; longitude:bounds = "longitude bnds" ; longitude:units = "degrees east" ; longitude:standard name = "longitude" ; float longitude bnds(longitude, bnds) : int forecast period ; forecast period:units = "seconds" ; forecast period:standard name = "forecast period" : int64 forecast reference time ; forecast reference time:units = "seconds since 1970-01-01 00:00:00" ; forecast reference time:standard name = "forecast reference time" ; forecast reference time:calendar = "gregorian" : int realization : realization:standard name = "realization" ; int64 time : time:units = "seconds since 1970-01-01 00:00:00" : time:standard name = "time" ; time:calendar = "gregorian" ;

Time Profiles

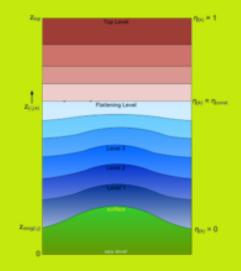
Standardised Model / Level 1


Horizontal Grids

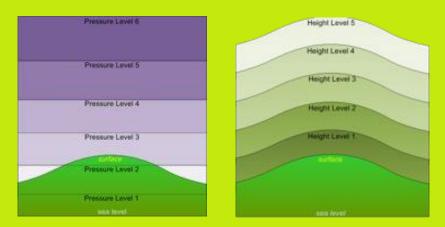
Raw Model / Level 0

Staggered grid, Model Coordinate Reference System

Standardised Model / Level 1

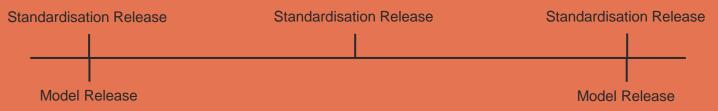


Regular grid, Standard Projection

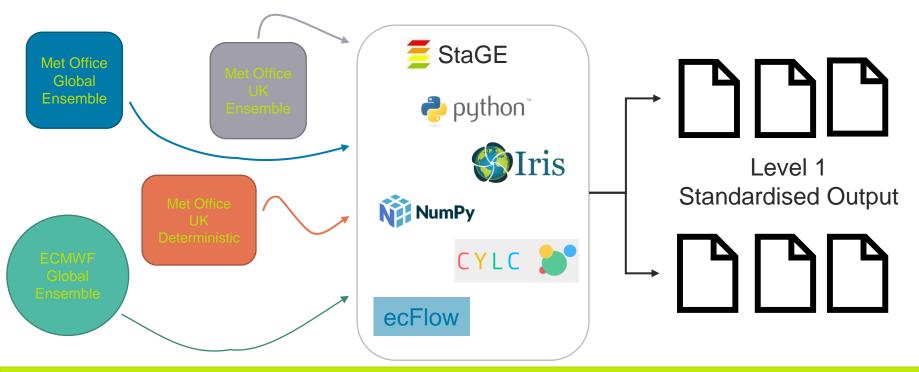


Vertical Levels

Raw Model / Level 0



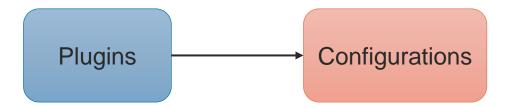
Standardised Model / Level 1



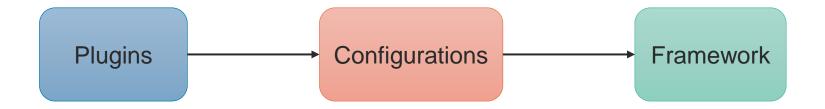
Non-functional Benefits

- Maintain metadata and file structure for end users during model changes.
- Reduce the demands on model developers for change requests that can be undertaken by standardisation software.
- Increase update frequency compared to model update timelines.

The Standard Gridding Engine - StaGE


Structure of StaGE Application

LoadGrib RegridBilinear Rename StandardTimeSteps


Structure of StaGE Application

CloudAmountOfLowCloud PressureAtSurface TemperatureAtScreenLevel WindSpeedAt10m

Structure of StaGE Application

\$ python -m stage run ec engl standard CloudAmountOfLowCloud 000

ecFlow StaGE workflow

stage_ec 🛦
run_limit: 0/100 00000000000000000000000000000000
install_cold
▼ 00 A
YMD= 20230420
v poll ③
/install_cold == complete
time 07:40 # expired ③
▶ poll_ec
generate_pickle
▼run_stage
poll == complete
inlimit :run_limit
▼ T0_3_6_9_12_15_18_21_24_27
M_members_10_3_6_9_12_15_18_21_24_27
- MO
run_stage_ec
> M1
▶ M49
▶ M50
M combine
output transfer mspds
► T30 33 36 39 42 45 48 51 54 57
► T50 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -
▶ T309-33 96 99 102 105 108 111 114 117
► TI20 123 126 129 132 135 138 141 144
► TI50 156 168 174 180 186 192 198 204
► T210 216 222 228 234 240 246 252 258 264
► T270 276 282 288 294 300 312 318 324
► T330 336 342 348 554 360
 Intrasfer notification
▼ archive
run stage == complete
archive output
► archive logs
▼ housekep
archive == complete
housekeep model data
housekeep stage data
housekeep logs
► mergency tasks ⊗

Next Steps Using ECMWF Data

- Providing level 3 global forecast data out to 14-days. EC will be our sole source model until the Met Office global ensemble has been extended (2024).
- Providing level 3 UK forecast data out to 14-days. Regrid global data to UK domain and blend with Met Office UK ensemble and deterministic models.
- We will look at calibrating the EC data for particular diagnostics to improve performance and alignment between different forecasts.

Acknowledgements

- Aled Owen
- Neil Crosswaite
- Sam Griffiths
- David James
- Caroline Jones
- Ben Ayliffe
- Alex Ferguson
- Paul Abernethy
- Ben Fitzpatrick

- Paul Dando
- Andrew Bennett

Australian Government Bureau of Meteorology

Daniel Mentiplay

Summary

- Adding ECMWF data into existing and new Met Office systems will improve current products and create new ones.
- Combining data from multiple sources is complicated and technically challenging.
- Updating and deploying the Standard Gridding Engine (StaGE) at ECMWF has standardised ECMWF and Met Office forecast data for simplified downstream usage.
- This new capability will help extend the IMPROVER probabilistic forecast system to 14 day forecasts for both the global and UK domains.

Extra Slides

Technical Challenges

- Acclimatise to a new compute estate Atos HPC
- Learning a new workflow manager ecFlow
- Developing grib loading capability in StaGE
- Developing grib parameter translation in StaGE and contributing to Irisgrib
- Configuring a conda environment for StaGE running at ECMWF
- Ensuring data are promptly and reliably transferred from the ECMWF Atos machine to the Met Office HPC estate

Derived Diagnostics

- Combining u & v wind to provide wind direction and speed
- Converting between humidity types
- Combining precipitation types