

Climate Change

Seasonal forecasts from Copernicus Climate Change Service (C3S)

Anca Brookshaw

and colleagues at the Copernicus Climate Change Service (C3S) - ECMWF

Using ECMWF's forecasts (UEF2023) – June 2023

111

opernicus

In Situ

.....

CLIMATE CHANGE

MARINE MONITORING.

ATMOSPHERE MONITORING

 \bigcirc

LAND MONITORING

SECURITY

C3S in brief

TECHNICAL MANAGEMENT

Evaluation & Quality Control

Operational Climate Data Store

Climate Indices Climate Projections In Situ Observations Satellite Observations Reanalyses Seasonal Forecasts

Sectoral Information System

Tools Applications

Climate Intelligence Communications User Support Training Engagement

Copernicus Knowledge Hubs

POLICY MAKERS, BUSINESSES & CITIZENS

C3S portfolio: Access to past, present and future climate information

https://cds.climate.copernicus.eu/cdsapp#!/home

Observations and climate reanalyses

Seasonal forecast data and products

Climate model simulations

Sectoral climate impact indicators

\leftarrow $ ightarrow$ C (\blacksquare cds.climate	e.copernicus.eu/cdsapp#!/search?type=application&keywords=((%20"Product%20type:%20Reanalysis"%20))&text=ERA5	G 🖞 🖈 🛛 🗛
附 Gmail 💡 Maps 👹 Lates	t weather re 😨 C3S Seasonal For 🗢 Official Site of the 🐅 Computing Distan 🕜 Warnock's win in 🍸 SystmOnline Login 🔥 HORIZON-CL5-20	
ERA5	All Applications Datasets Providers	
Sort by Relevancy	Showing 1-6 of 6 results for ERA5 × Reanalysis ×	
Title	ERA5 explorer	Service a set or which an the major descent a set of a final distribution (addition for Feynel 1973 203) The analysis of the service and the set of the service and the set of the set of the set of the set of the set of the set of
 Product type Climate projections Reanalysis 	 Application Global Reanalysis (2) This application provides visualisations of historical climate statistics for any location around the world. Click anywhere on the interactive map or search for a city to explore the typical monthly climate and discover how the climate has changed over the past forty years. This application is driven by ERA5, the fifth generation ECMWF atmospheric reanalysis of the global climate. ERA5 describes t 	
 ✓ Variable domain □ Atmosphere (surface) □ Land (biosphere) 	 (1) Daily statistics calculated from ERA5 data (2) Application Reanalysis 	Determine Parameter Votable Votable Votable
 ✓ Spatial coverage □ Europe □ Global 	 This application allows users to compute and download selected daily statistics of variables from a number of hourly ERA5 datasets. It provides users with a simple tool to obtain ERA5 data aggregated at daily frequency without having to download the original sub-daily (1) resolution data. The ERA5 data is subset to the selected rectangular spatial region of interest and sampled at the selected frequen (4) Updated 2021-10-13 	Contrast 5/03/06-06-06-060-0605/05/06.ec
 ✓ Temporal coverage □ Future □ Past 	 Heating and cooling degree days from 1979 to 2100 Application Global Atmosphere (surface) Reanalysis Climate projections maximum, average and minimum temperatures. ERA5 reanalysis was used to cover the past and present, while 	Hadron acting depending the second se
 ✓ Sector ☐ Agriculture ☐ Energy 	(2) (1)	
 ✓ Provider □ Copernicus C3S 	(4) Application Energy Reanalysis Europe	

https://cds.climate.copernicus.eu/cdsapp#!/search?type=application

C3S seasonal prediction: components

DATA PRODUCTS ົ 1110101

cds.climate.copernicus.eu

Datasets available in the Climate Data Store: atmosphere

- daily and subdaily data (6h, 12h, 24h) •
- monthly statistics (mean, max, min and standard deviation) ٠
- bias corrected data (monthly anomalies) ٠

ocean monthly means

Sm

Multi-system retrospective forecasts and real-time forecasts, the latter published on 6th (ECMWF) and 10th day of month (the rest)

GRAPHICAL PRODUCTS

climate.copernicus.eu/charts/packages/c3s seasonal/

Source	Individual contributing systems Multi-system combination	C3S multi-system seasonal forecast ECMWF/Met Office/Méteo-France/CMCC/DWD-NCEP-UMA/ECCC Protrients likely category of precipitation) MMI 2022 International and 105322
Variables	Total precipitation Near-surface temperature Mean sea-level pressure Sea surface temperature Geopotential height at 500 hPa Temperature at 850 hPa	
2D Maps - Global - Predefined regions	Ensemble mean anomaly Probabilities exceed quantiles: Median Terciles Quintiles	Control of the second s
Time series - SST NINO regions - SST Indian Ocean - Wind at 10hPa	Ensemble members Percentiles Probabilities	

<u>C3S seasonal predictions - data products</u>

Climate	5
Change	T

Seasonal forecast anomalies on pressure levels Dataset Atmosphere (surface) Atmosphere (upper air) Global Seasonal forecasts This entry covers pressure-level data post-processed for bias adjustment on a monthly time resolution. Seasonal forecasts provide a long-range outlook of of predictable changes in some of the slow-varying components of the system. For example, ocean temperatures typically vary slowly, on timescales of wee Updated 2023-06-05					Variable ⑦ At least one selection must be made	
Seasonal fore Dataset Atmosphe Predictable changes in : Updated 2023-06-05 Seasonal fore	Seasona	Download data	nomalies on s	ingle	 10m u-component of wind anomaly 10m wind gust anomaly 2m dewpoint temperature anomaly East-west surface stress anomalous rate of accumulation 	 10m v-component of wind anomaly 10m wind speed anomaly 2m temperature anomaly Evaporation anomalous rate of accumulation Maximum 2m temperature in the last 24 hours
Dataset Global This entry covers global for the land and atmoss Updated 2023-06-05			4		 Mean sea level pressure anomaly Mean surface runoff rate anomaly 	 Maximum 2m temperature in the last 24 hours anomaly Mean sub-surface runoff rate anomaly Minimum 2m temperature in the last 24 hours anomaly
Seasonal fore Dataset Atmosphe This entry covers pressi predictable changes in : Updated 2023-06-05 Seasonal fore Dataset Atmosphe This entry covers pressi in some of the slow-var Updated 2023-06-05	Originating centre At least one selection must be made O ECMWF O UK Met Office O CMCC O NCEP		 North-south surface stress anomalous rate of accumulation Sea-ice cover anomaly Snow depth anomaly Soil temperature anomaly level 1 Surface latent heat flux anomalous rate of accumulation Surface solar radiation anomalous rate of accumulation 	 Runoff anomalous rate of accumulation Sea surface temperature anomaly Snow density anomaly Snowfall anomalous rate of accumulation Solar insolation anomalous rate of accumulation Surface sensible heat flux anomalous rate of accumulation Surface solar radiation downwards anomalous rate of accumulation 		
Seasonal fore Dataset Atmosphe This entry covers single some of the slow-varyir Updated 2023-06-05 Seasonal fore Dataset Atmosphe This entry covers single weeks or months, as a r	System At least o O 1 O 7 O 21	System ? At least one selection must be made 0 1 0 2 0 3 0 7 0 8 0 12 0 21 0 35 0 600		 Surface thermal radiation anomalous rate of accumulation Top solar radiation anomalous rate of accumulation Total cloud cover anomaly Total column cloud liquid water anomaly Total precipitation anomalous rate of accumulation 	 Surface thermal radiation downwards anomalous rate of accumulation Top thermal radiation anomalous rate of accumulation Total column cloud ice water anomaly Total column water vapour anomaly 	
Updated 2023-06-05						

https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-postprocessed-single-levels?tab=form

mato	← → C (ds.climate.copernicus.eu/cdsapp#!/dataset/	seasonal-monthly-ocean?tab=form	
ange	Gmail Q Maps Q Latest weather re C3S Seasonal For Seasonal forecast monthly averages o	Official Site of the Step Computing Distan (Warnock's win in SystmOnline Login focean variables	HORIZON-CL5-20 HORIZON-CL5-2023-D1-01-01 - Google Drive google.com//1_4Wem44M23c-SQxu_HFbu
	То	improve our service, we need to hear from you! Please complete this very short survey &. Th	hank you.
12	Overview Download data Documentation		Contact
Variabl At least o	le ⑦		
🗌 Mix	ked layer depth 0.01 oth average salinity of upper 300m	 Sea ice thickness Depth average potenti 	ial temperature of upper 300m
Mix Dep Dep	ked layer depth 0.03 oth of 14°C isotherm oth of 20°C isotherm	 Sea surface salinity Depth of 17°C isotherr Depth of 26°C isotherr 	n n
🗌 Dep	oth of 28°C isotherm	Sea surface height abo	ove geoid Select

https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-monthly-ocean?tab=form

'Recent' products: stratospheric wind

Commission

Recent' products: SST indices

Climate

Change

%

Ĕ

'Operational' verification scores

 \rightarrow C (\triangleq confluence.ecmwf.int/display/CKB/C3S+seasonal+forecasts+verification+plots

M Gmail 💡 Maps 👙 Latest weather re... 😂 C3S Seasonal For... 🗢 Official Site of the... 🙀 Computing Distan... 🕜 Warnock's win in... 🍸 SystmOnline Login 💧 HORIZON-CL5-20...

.

☆

0.0

-0.4

-0.8

O Ú

Save for later

Edit

Update :

A

Copernicus Arctic Regional Re

 \leftarrow

- > Copernicus European Regiona
- C3S Seasonal Forecasts
- C3S Seasonal Forecasts: dat
- Announcements
- Seasonal forecasts and th
- > Description of the C3S sea
- How to use the CDS intera
- > Summary of available data
- > Detailed list of parameters
- > Recommendations and eff
- C3S Seasonal Forecast kn
- C3S seasonal forecasts
- > C3S Climate projections
- > Essential Climate Variables (EC
- > Global MULti-model hYdrologi
- > In situ gridded observations
- Mass-consistent atmospheric
- Near surface meteorological v
- > Sectorial Information System (
- > CDS application documentation
- > C3S precursor dataset documen

~

- > EQC documentation
- > ECMWF model and products

Space tools

/... / C3S Seasonal Forecasts: datasets documentation 🚡 🧭

C3S seasonal forecasts verification plots

> Introduction (click to expand)

 Forecast system:
 C3S multi-system (2023)
 ✓

 Nominal start date:
 January
 ✓
 Aggregation and leadtime:
 1m; lead1 ✓

 Variable:
 Sea-surface temperature ✓
 Score:
 Correlation ✓

C3S multi-model (2023) **sea-surface temperature** (stippling where significance below 95%) Start month: **JAN** - Valid month: **FEB**

https://confluence.ecmwf.int/display/CKB/C3S+seasonal+forecasts+verification+plots

'Operational' verification scores

 \sim

 Forecast system:
 MeteoFrance System&

 Nominal start date:
 January
 Aggre

 Variable:
 SST indices
 Sc

Météo-France System 8 , NINO3.4 SST reforecasts 1993 - 201

Forecast system:	MeteoFrance	System8	~		
Nominal start date	e: January	Aggrega	tion and lead	time: 1m; le	ad0 \sim
Variable: SST indi	ces	✓ Score	Correlation	✓ SST index	: IOD

Météo-France System 8 , IOD(IndOcW – IndOcE) SST index (temporal correlation with ERA5) reforecasts 1993 - 2016, ensemble size = 25

9 -	-0.02	-0.09	0.01	0.44	0.37	0.39	0.42	0.24	0.09	0.21	-0.04	0.13
- n	0.18	-0.01	-0.02	0.44	0.41	0.50	0.44	0.63	0.40	0.22	0.06	0.05
ime 4	0.11	0.17	-0.06	0.41	0.38	0.56	0.67	0.71	0.69	0.06	0.12	0.21
leadt 3	0.09	0.31	0.12	0.48	0.45	0.53	0.79	0.83	0.77		-0.01	-0.04
- 2	-0.12	0.43	-0.05	0.45	0.54	0.59	0.82	0.87	0.88	0.87	0.56	-0.07
ч -	0.46	0.54	0.64	0.30	0.45	0.80	0.87	0.89	0.92	0.93	0.89	0.60
	jan	feb	mar	apr	may	jun start r	jul	aug	sep	oct	nov	dec

Météo-France System 8 , IOD(IndOcW – IndOcE) SST index (temporal correlation with ERA5) reforecasts 1993 - 2016, ensemble size = 25

9 -	0.24	0.09	0.21	-0.04	0.13	-0.02	-0.09	0.01	0.44	0.37	0.39	0.42
- <u>م</u>	0.40	0.22	0.06	0.05	0.18	-0.01	-0.02	0.44	0.41	0.50	0.44	0.63
ime - 4	0.06	0.12	0.21	0.11	0.17	-0.06	0.41	0.38	0.56	0.67	0.71	0.69
leadt 3 1	-0.01	-0.04	0.09	0.31	0.12	0.48	0.45	0.53	0.79	0.83	0.77	0.70
- 2	-0.07	-0.12	0.43	-0.05	0.45	0.54	0.59	0.82	0.87	0.88	0.87	0.56
	0.46	0.54	0.64	0.30	0.45	0.80	0.87	0.89	0.92	0.93	0.89	0.60
	jan	feb	mar	apr	may	jun valid r	jul month	aug	sep	oct	nov	dec

Météo-France System 8 , **IndOcW SST index** (temporal correlation with ERA5) reforecasts 1993 - 2016, ensemble size = 25

Météo-France System 8 , **IndOcE SST index** (temporal correlation with ERA5) reforecasts 1993 - 2016, ensemble size = 25

6-	0.75	0.81	0.80	0.86	0.65	0.46	0.34	0.35	0.51	0.41	0.39	0.44
s- در		0.80	0.82	0.80	0.63	0.53	0.46	0.60	0.46	0.52	0.41	0.58
- 4	0.75	0.80	0.78	0.82	0.68	0.56	0.63	0.60	0.61	0.66	0.72	0.71
aleadt	0.73	0.76	0.75	0.85	0.75	0.73	0.67	0.70	0.79	0.82	0.74	0.50
- 2		0.72	0.85	0.85		0.83	0.75	0.85	0.87	0.84	0.75	0.38
	0.69	0.81	0.92	0.83	0.86	0.85	0.87	0.92	0.89	0.87	0.77	0.62
	jan	feb	mar	apr	may	jun valid i	jul nonth	aug	sep	oct	nov	dec

Verification: NINO indices in multi-system

OPERPICUS Europe's eyes on Earth **C**ECMWF

Climate

Change

	MAY	JUN	JUL	AUG	SEP	OCT	
C3S multi-model -	0.98	0.94	0.88	0.84	0.82	0.83	
ECMWF SEAS5 -	0.98	0.93	0.85	0.81	0.78	0.81	
NCEP CFSv2 -	0.89	0.81	0.76	0.83	0.85	0.83	
MeteoFrance System7 -	0.97	0.92	0.88	0.82	0.75	0.79	
CMCC SPS3.5 -	0.98	0.93	0.86	0.84	0.82	0.84	
JMA CPS2 -	0.95	0.84	0.75	0.76	0.75	0.76	
MetOffice GloSea6 -	0.98	0.93	0.83	0.77	0.75	0.75	
DWD GCFS2.1 -	0.92	0.82	0.72	0.62	0.62	0.65	

4 correlation

- 1.0

- 0.9

- 0.8

- 0.7

- 0.6

- 0.5

European

Commission

RPS November to December-February

C3Smm_s6BK8 Mean-sea-level Pressure (Tercile Categories) Start month: NOV - Valid month: DJF

¹⁰⁵ ECs5, MFs8, UKs600 – **MM3**

C3Smm_s6RD4 Mean-sea-level Pressure (Tercile Categories) Start month: NOV - Valid month: DJF

ECs5, MFs8, UKs600, DWDs21, CMCCs35 -**MM5**

03

- 0.2

- 0.1

C3Smm_s6YH4 Mean-sea-level Pressure (Tercile Categories) Start month: NOV - Valid month: DJF

ECs5, MFs8, UKs600, DWDs21, CMCCs35, NCEPs2, JMAs2 – **MM7**

- 0.5

- 0.2

RPS differences: combination-individual

C3Smm_s6YH4 minus ukmo_s600 Mean-sea-level Pressure (Tercile Categories) Start month: NOV - Valid month: DJF

0.08

0.04

-0.00 🖁

-0.04

-0.08

C3Smm_s6YH4 minus dwd_s21 Mean-sea-level Pressure (Tercile Categories) Start month: NOV - Valid month: DJF

-0.00 ដ្អ

-0.04

0.08

0.04

- 0.00 ដ្ឋ

-0.04

-0.05

C3Smm_s6YH4 minus meteo_france_s8 Mean-sea-level Pressure (Tercile Categories) Start month: NOV - Valid month: DJF

C3Smm_s6YH4 minus ncep_s2 Mean-sea-level Pressure (Tercile Categories) Start month: NOV - Valid month: DJF

C3Smm_s6YH4 minus ecmwf_s5 Mean-sea-level Pressure (Tercile Categories) Start month: NOV - Valid month: DJF

0.04

-0.00 ¥

-0.04

-0.08

C3Smm_s6YH4 minus jma_s2 Mean-sea-level Pressure (Tercile Categories) Start month: NOV - Valid month: DJF

red: combination is 'better'

C3Smm_s6YH4 minus cmcc_s35 Mean-sea-level Pressure (Tercile Categories) Start month: NOV - Valid month: DJF

Examples of data processing

 \leftarrow \rightarrow C

C3S Training

Q Search this book...

Copernicus Climate Change Service (C3S) Data Tutorials

CLIMATE DATA STORE (CDS)

REANALYSIS TUTORIALS

TUTORIALS ON CLIMATE PROJECTIONS

Climate Projections (CMIP6) Climate Projections (CORDEX) TUTORIALS ON SEASONAL

Seasonal Forecast Anomalies

TUTORIALS ON CLIMATE

Windchill Index Calculation

CDS tutorial

Climatology

FORECASTS

INDICES

Heatwave Analysis

Copernicus Climate Change Service (C3S) Data **Tutorials**

Discover how to access and handle data of the past, present and future climate!

This website contains Jupyter notebook based tutorials that demonstrate how to access and process the wide variety of climate data provided by the Climate Data Store (CDS) of the Copernicus Climate Change Service (C3S). Each tutorial provides interactive examples of common workflows to derive information about the past present and future climate. They include code in Python and content in Markdown to provide clear, engaging and practical instructions on data handling which can be run in various cloud environments without any need for installation. You are invited to experiment with these tutorials and tailor them to your needs to extract results meaningful to you! The tutorials make use of climate data freely available on the CDS and accessed using an Application Programming Interface (API)

How to run these tutorials

The tutorials are in the form of Jupyter notebooks. At the top of each notebook you will find links to a selection of cloud-based services to run, edit, export or create new notebooks. These include the following:

Colab

TUTORIALS ON BIAS CORRECTION

Kaggle

https://ecmwf-projects.github.io/copernicus-training-c3s/intro.html

Binder

Examples of data processing

Change

As part of the C3S training offering, a Jupyter notebook is available showing how forecast anomalies can be calculated and visualised: https://ecmwf-projects.github.io/copernicus-training-c3s/sfanomalies.html

Further examples will be added, including the generation of verification charts (similar to those shown on the verification plots page), and bias correction of SST indices.

These examples may be useful even for those familiar with analysing similar data, as common issues or pitfalls can be highlighted, e.g.

NOTE:

The second of the time dimensions is valid for systems with burst start dates (such as in our example), but for lagged systems, time should be replaced with indexing_time. Please see here for more details on the difference between burst and lagged systems.

ds hindcast = xr.open dataset(f'{DATADIR}/ecmwf seas5 1993-2016 05 hindcast monthly tp.grib', ds hindcast

Seasonal Forecast Anomalie

TUTORIALS ON CLIMATE INDICES Windchill Index Calculation TUTORIALS ON BIAS

CORRECTION Python library (ibicus) and

tutorials on bias correction 🗹 ATMOSPHERE MONITORING

TUTORIALS Tutorials from the Copernicus

Atmosphere Monitoring Service (CAMS) 🖻

4.2 Plot of total precipitation anomalies for each seasonal forecast month

In this step we will summarise the total precipitation behaviour over the whole region for each lead time month We will do this by averaging in the spatial (latitude and longitude) dimensions

To put the anomalies in context they will be compared to the reference climate computed in this subregion from the hindcast data.

Powered by Jupyter Book

created by by Eduardo Penabad and Chris Goddard

User statistics - data requests

We are exploring the CDS logs for insights into user preference/needs and practices.

Headlines so far:

- While academic users are the largest group, there is significant representation from other groups
- There were ~1100 unique users of the data during January to May 2023
- There are approximately 500 unique users per month
- 'Monthly single levels' data have the largest number of requests

We also provide producing centres with statistics about use of their data.

In the future we plan to investigate which physical variables see the highest useage.

Geographical distribution of Active users Year to date: 0 60 - 90 90 - 120 120 - 150

0 - 30 30 - 60

Matteo de Felice @matteodefelice

Simon Lee @SimonLeeWx

assembled by E Penabad

C3S Multi-model Seasonal Hydrological Prediction Service

- Climate forecast / reforecast forcing (ECMWF SEAS5, CMCC):
 - Downscaled and bias corrected (quantile mapping)
 - Reforecasts 1993-2015 (25/40 ensemble members)
 - Forecast (51/50 ensemble members)
- **9 Hydrological models**
 - European-scale (5 km): E-HYPEcatch, E-HYPEgrid, VIC-WUR, EFAS LISFLOOD
 - Global-scale (10 km): JULES, mHM, HTESSEL, PCR-٠ GLOB, GIOFAS LISFLOOD
- Variables (daily time-step): River discharge, runoff, snow water equivalent, soil moisture, precipitation & temperature
- Quality control, skill assessment & available via the CADS
- Due to become operational in April 2024

CADS toolbox: European hydrology seasonal forecast explorer (May 2023)

courtesy of Shaun Harrigan

What next?

- seasonal predictions
 - new graphical products: wind speed, sea ice, marine 'heatwaves'
 - new data: soil moisture (July '23), water column (June '23); diagnostics
 - new products as workflows (Jupyter notebooks): sea-surface height as proxy for coastal El Niño; Tmin/max
 - further upgrades to operational systems, including ECMWF's SEAS6
 - multi-year predictions? (under discussion)
- decadal prediction product development and real-time updates
- more examples of data use and applications (as workflows)

