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European heatwave, 1 July 2015, EOSDIS NASA



Outline

» Biases in sub-seasonal (re)forecasts

« Medium-range / sub-seasonal (re)forecast skill evaluation

« Learnings and challenges from our work with ECMWF’s reforecasts — and what the update to cycles
48r1 and 49r1 might bring
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Sub-seasonal (re)forecast biases in Northern Hemisphere extratropical
CyCIOne aCtiVity (Biieler, Sprenger, and Wernli, under review in QJRMS)

Cyclone frequency biases in winter (DJF) Cyclone frequency biases in summer (JJA)

All weeks Weeks 1-2 All weeks Weeks 1-2

Largest in summer,
smallest in winter - role
for predictability of heat
and precipitation in
summer?

Patterns appear at
medium-range, but
magnitudes saturate at
sub-seasonal lead times
- understanding model drift
also requires identifying
bias sources at early lead
times

Further findings (not shown
here): cyclones are too
deep during most seasons
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Year-round sub-seasonal (re)forecast skill for Atlantic-European weather
regimeS (Buieler, Ferranti, Magnusson, Quinting and Grams, 2021, QJRMS; Osman et al., under review in QJRMS;

Grams et al., 2017, NATCLIM)
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Skill horizon longest in winter,
shortest in summer

Strong differences in skill for
individual regimes - skill horizon
longest for “Z0” and “GL”, shortest for
“no regime” and “EuBL”

Despite better skill for regimes than “no
regime”, useful average regime skill
still limited to medium-range >
crucial to extract / better understand
“windows of opportunity” for useful
sub-seasonal skill (e.g., stratosphere,
MJO; cf. Bueler et al., 2021, QJRMS)



Sub-seasonal (re)forecast skill for 2m-temperature in Europe following
extreme StratOSpheriC pOIar vortex states (Bueler, Beerli, Wernli, and Grams, 2020, QJRMS)

Country-aggregated month-ahead forecast skill for 2m-temperature terciles following
strong and weak stratospheric polar vortex (SPV) states during winter (DJF)
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Sub-seasonal (re)forecast skill for 2m-temperature in Europe following
extreme StratOSpheriC pOIar vortex states (Bueler, Beerli, Wernli, and Grams, 2020, QJRMS)
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strong and weak stratospheric polar vortex (SPV) states during winter (DJF)
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| Very weak SPV

Strong SPV states:
enhanced skill for
most of Europe
except for some
Scandinavian
countries



Sub-seasonal (re)forecast skill for 2m-temperature in Europe following
extreme StratOSpheriC pOIar vortex states (sueler, Beerii, wernii, and Grams, 2020, QJRMS)

Country-aggregated month-ahead forecast skill for 2m-temperature terciles following

strong and weak stratospheric polar vortex (SPV) states during winter (DJF)
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| Very weak SPV

Strong SPV states:
enhanced skill for
most of Europe
except for some
Scandinavian
countries

Weak SPV states:
enhanced skill for
Scandinavian
countries but reduced
skill for many
Central/Southern
European and Balkan
countries 2>
problems in
predicting varying
extent of cold air
masses into
Central/Southern
Europe



How well would extreme Mediterranean cyclones in history have been
predicted with today’s ECMWF forecast system? - Algiers flooding 2001

case study (Gabriel Vollenweider, 2023, MSc thesis ETH Ziirich)

Predictions for different forecast initial times before event
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Ensemble hindcasts (EH; i.e., based on more
recent model versions) outperform ensemble (EF)
and deterministic forecast (FC) operational back
then - improved ensemble mean and spread,
extended skill horizon

Improvements less obvious for other cases >
model improvements translate very differently
into predictability gains for individual extreme
events

Thesis was insightful, but reached limits of what
is possible with data availability in ECMWF’s
public reforecast archive



Ongoing work: how to define climatological reforecast distribution to
identify extreme temperature in individual ensemble members

(new project on sub-seasonal heatwave/drought prediction with M. Pyrina and D. Domeisen in collaboration with MeteoSwiss)
Grid point of Zurich
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on ensemble means - effect on

identification of heatwave events

(i.e., T2M above certain percentile)

Which way to go? How does
ECMWEF do this for EFI?
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Ongoing work: how to define climatological reforecast distribution to
identify extreme temperature in individual ensemble members

(new project on sub-seasonal heatwave/drought prediction with M. Pyrina and D. Domeisen in collaboration with MeteoSwiss)
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Learnings and challenges from our work with ECMWF's reforecasts —
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and what the update to cycles 48r1 and 49r1 might bring

Great and easily accessible treasure that should be used!

Transferability of insight gained from reduced reforecast ensemble (11 members) to
operational ensemble (51, soon 101, members)?

Irregular initialization frequency makes things more cumbersome, particularly for extreme
event studies and model intercomparison - daily (?) initialization frequency will help

Too small sample size for flow-dependent (re)forecast verification (e.g., stratification for
regimes and MJO states) - daily (?) initialization frequency will help, but only slightly 2
more tailored simulations over longer periods required for verification studies?

Sensitivity of verification to mixing of model versions?

Understanding sub-seasonal model drift also requires identifying/understanding bias
sources at early lead times - parallel medium-range and extended-range reforecasts in
combination will provide interesting new research dataset (= e.g., role of spatial resolution for
bias evolution at early lead times?)

Different ways of calculating (re)forecast climatologies (and distributions) to correct for
biases = should ECMWF provide official guidelines or even datasets?
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