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Bringing it all together to provide concise, accurate and actionable weather 
intelligence forecasts

Models

Proprietary ModelsRegional Models Global Models

Observations

Tomorrow.spaceWoT Public Data

ML Engine

Goal of this work: Provide forecasts to 
our customers that are more accurate 
at the local scale than standalone 
operational NWP, and provide 
probabilities to support their decision 
process

Key Question: 
What is the added value of private sector 

forecasts?

TM
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Tomorrow.io Platform 

Focus of this presentation
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Artificial Neural Network model to 
predict multiple outputs and create 

probabilistic forecasts based on HRRR 
at 3-km resolution

Operational, containerized, pipeline 
to prepare feature inputs from hourly 

HRRR initializations and to output 
predictions in a format that is 

ingested by the platform & API

CONUS MTNN Model Inference
4-year dataset split into 2 year 
training, 1 year test and 1 year 

validation. Evaluate error metrics on 
scorecard to determine whether to 

move to production

Model Verification

TM

Multi-Task Neural Network (MTNN) Pipeline
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Target Selection: Reanalyses or Stations?

● ERA5 is desirable as it is (relatively) high resolution, spatially-continuous, and many publications 
have quantified its exceptional performance relative to other reanalyses

● High Resolution Rapid Refresh (HRRR – Nation’s operational high-res forecast system) is used as 
feature input to the NN, and generally matches HRRR at initialization

● Station data (from the Integrated Surface Database (ISD)) is more representative of the conditions 
that users  experience – Decision to target improving HRRR predictions for customers. 
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ANN (TensorFlow)
● CRPS loss function
● Multiple target variables from ISD observations
● Trains in 3 hours on 1x NVIDIA T4 (16GB) - 4 year 

dataset (2 years for training)
● Key Hyperparameters:

○ Ensemble members per target =21 
○ Learning Rate = 0.001
○ Epochs = 200
○ Batch Size = 4096
○ Activation function = elu
○ Nodes per hidden layer = 48
○ Hidden layers = 6
○ Overfitting control (next slide)

LC

MTNN Summary
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Avoiding overfitting
● L1 Regularization
● L2 Regularization
● Batch normalization

○ Helps coordinate update of multiple layers
● Early Stopping
● Dropout 

○ 10%, 15%, 10%, 15%, 10%, 15%

MTNN Summary
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● Predictions hourly out to 48-hr
● Forecast Variables:

○ 2-m temperature
○ 2-m dewpoint temperature
○ 10-m wind speed and direction
○ surface pressure
○ mean sea surface pressure
○ relative humidity
○ precipitation rate

● Probabilistic (forecast percentiles)
○ 5, 10, 25, 50, 75, 90, 95

Forecast Variable (i.e. 2-m temperature)
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21 predictions

AP

25

Percentiles

75

Percentiles are used to translate information from each 
variable’s probability distribution into useable information

MTNN Output
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● Winter Storm Uri marked by a prolonged cold-air outbreak in Texas, with catastrophic impacts on 
energy and water infrastructure. 

● Ensemble Predictions Capture Extreme Low Temperature Event (Dallas, TX shown)

AP

MTNN Event Example: Winter Storm Uri
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CRPS results demonstrate value of MTNN probabilistic relative to operational HRRR

● CRPS is our loss function, so we expect improvement

● Will evaluate compared to climatology in the future

Forecast Variable  (level) HRRR CRPS 
(equal to MAE) MTNN CRPS MTNN percent 

improvement

2-m Temperature 1.57°C 1.11°C 29.3 %

10-m Wind Speed (U,V) ~1.5 m/s ~0.97 m/s ~35%

2-m Dewpoint 2.02°C 1.27°C 37.1 %

Surface Pressure 2.30 hPa 1.79 hPa 22.2 %

Precipitation Rate (Surface) 0.16 mm/hour 0.10 mm/hour 37.5 %

ARH

MTNN Summary Results - Probabilistic
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Application of MTNN to Extended Lead Times and Global Locations

● Longer lead-times require ingest of global models (e.g., ECMWF HRES, GFS, and their respective ensembles)

● Ability to handle NWP uncertainty across lead-time, condition and location as NN features (Reforecasts Needed!)

● ISD data is still a desirable target, but the coverage limitation is an issue



(~5500/35000 ISD Stations)>95% Hourly Records 2021-2023

Revisiting Model Targets for Global Applications

● ISD coverage is sparse outside of the US, Europe, 
Japan and parts of Australia.

● Global precipitation obs are not practical for ML 
use (not consistent enough in space and time, and 
generally not available sub-daily. Also, challenging 
to standardize QC)

● What are the alternatives (e.g., satellite obs?)



The Tomorrow.io Radar/Radiometer LEO Constellation

Instrument Details

Building on decades of technology advancement in active/passive microwave instrumentation to enable the 
world’s first operational precipitation mapping constellation comprised of science-quality payloads

Constellation Capabilities
SmallSat Radar:

● Ka-band (35.5-36 GHz)
● Wide swath (400 km)
● High sensitivity (≤ 12 dBZ)
● High resolution (5 x 5 x .25 km)
● Adaptive, reconfigurable 

software-defined radar

CubeSat Sounder:
● Variant of TROPICS MWS
● 12 channels from 92-205 GHz
● 118 GHz O2 temp. sounding
● 183 GHz H2O sounding

● Heterogeneity: 10 radars + 18 
sounders planned

● ~hourly mean revisit over 
majority of globe

● 15 minute downlink latency
● Real-time precipitation, 

temperature, and humidity 
profiling

● Surface characterization from 
NRCS (radar) & clear-sky Tb
(radiometer)
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Post-processing high-resolution weather forecasts with deep learning to create operational ensembles

We present a machine learning model that post-processes high-resolution, deterministic forecasts to produce short to medium-range probabilistic 

forecasts for seven core weather variables. We developed and operationally implemented a multi-task neural network with a custom loss function, 

namely the Continuous Ranked Probability Score (CRPS). We tested this methodology using raw deterministic ECMWF HRES forecasts, ERA5 

reanalysis fields as target data, and ERA5 invariant fields as supplementary features. Additionally, we tested and operationalized this model using 

data from the High Resolution Rapid Refresh (HRRR) model as input. This technique combines the strengths of high-resolution Numerical 

Weather Prediction (NWP) modeling with complex non-linear machine learning to generate more accurate deterministic forecasts alongside 

probabilistic forecasts, adding substantial predictive and actionable information. The results show deterministic forecast improvements in Root 

Mean Square Error (RMSE) over the HRRR from 1% to 12.5%. Using the CRPS as a metric to validate the probabilistic forecasts, we find a 22% 

to 38% improvement over the HRRR model. In addition to this increased forecast skill, the multi-task neural network approach is affordable to 

train and lightweight enough to run operationally on hourly forecasts. While our application used 21 ensemble members, this machine learning 

based approach has the flexibility to generate any number of ensemble members to best fit distribution of the forecast variables without 

significantly increasing computational costs.



XGB - 50th

ECMWF HI-
RES

GEFS-
AVG

Precipitation Rate (mm/h): 2022-12-14 00:00Z
Lead Time = 96h (4d)

Lead Time = 96h 
(4d)

Initialized (t): 
2022-12-10-00Z

t+0 days t+2 days t+4 days t+8 dayst+6 days t+10 days

Timeseries from Shreveport, LA 
(32.5N, 93.5W)

MRMS

Questions that arise from a POC of 
global/multi-model post-processing:
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• What are the appropriate methods for evaluating the models themselves?

• How can physical constraints be baked in?

Questions that arise from a POC of global/multi-model post-processing:
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