

Context and background

Modelling electricity grids with a large proportion of renewables

 Focusing on power transmission between different regions

Using PyPSA-Eur - an open model
 of a European power grid [1]

 Using ML techniques for speed up to analyze large amount of scenarios

[1] Jonas Hörsch, Fabian Hofmann, David Schlachtberger, and Tom Brown. *PyPSA-Eur: An open optimisation model of the European transmission system.* arXiv:1806.01613, doi:10.1016/j.esr.2018.08.012.

What are expired weather forecasts?

European Centre for Medium-Range Weather Forecasts

HRES - single High Resolution Forecast (10 days, #9km)

ENS - 51-member ensemble forecast (15 days, #18km)

ENS Extended - twice weekly extended to 46 days (#36km)

ERA 5 - reanalysis: IFS physical model fitting measured data (#31 km)

Integrated Forecast System (IFS)

ECMWF ENSemble forecast

initiated 2x a week
50 diverging ensemble members

Comparison to GCM Ensembles

- Another approach is using downscaled GCM ensembles (EURO-CORDEX)
- How do you deal with climatechange related distribution shift?
- E.g. van der Wiel, 2019, https://doi.org/10.1016/j.rser.2019.04.065

Collating the ENS dataset

- Past forecast runs are stored on an offline tape storage in the ECMWF MARS archive
- Limiting variables and cropping to Europe, only about 3GB are extracted from each forecast tape
- The request for each run falls in a queue
 - Rate of Download ≈ 4 months of ENS runs / week
 - ≈ 130 Years eq (116 GB)
- the Archive data is under CC BY license (cc)

2023-05-14 23:51:42 Request submitted 2023-05-15 21:30:13 Processing request :30:13 mars - Request cost: 444,000 fields Gbytes online, 609, 218 Gbytes on 2 tapes

What are the relevant variables?

t2m	[C]	2 metre temperature
w10	[m s**-1]	10m wind speed
w100	[m s**-1]	100m wind speed
ssrd	$[J m^{**}-2/h]$	Δ Surface short-wave (solar) radiation downwards
strd	$[J m^{**}-2/h]$	Δ Surface long-wave (thermal) radiation downwards
ssr	$[J m^{**}-2/h]$	Δ Surface net short-wave (solar) radiation
ro	[m]	Runoff
stl4	[C]	Soil temperature level 4
d2m	[C]	2 metre dewpoint temperature
sp	[Pa]	Surface pressure

ENS Extended expired forecast for Vienna (2017-01-02)

ENS Extended expired forecast (2017-01-02) - 10m wind speed [m/s]

Variance between ENS Extended ensemble members

Variance between ENS Extended ensemble members (averaged over a month)

ENS Extended forecast

51 ensemble members ×

2 runs per week ×

4 weeks per run ×

Run since 2008:

× 14 years

5,712 y

ENS Extended forecast

51 ensemble members ×

2 runs per week ×

4 weeks per run ×

Run since 2008:

× 14 years

*same day of year in the past 20 years

ENS Reforecast

20 initial conditions ×

11 ensemble members ×

2 runs per week ×

4 weeks per run

Run since 2016:

× 6 years

16,272 y

What are the caveats?

- Temporal resolution is the main limiting factor
- Spans multiple model cycles
- Different measure of quality (low bias vs high skill)

???

(tell us what else might be a problem)

