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Concept: every EPE has its own dynamical history but also common drivers. w’“
We use early precursors to improve EPE prediction in the medium-range

Non-local
large-scale dynamics

WAVES TO WEATHER

Local Extreme precipitation event

dynamical setting (EPE)

2 PVU contour ® Arcas >=99°
. Areas < 99°

extreme
precipitation
object

Extratropical
transition

One possible precursor :
chain for North Italian Stratﬂsphﬂrlc

floods PV streamer

Adapted from De Vries 2020

Joshua Dorrington, 2022 EPE is defined as a day with at least a
Warning area of N-IT above the 99° of daily
precip




Storm Alex, 2-3 Oct 2020, 500mm in 12h

Local precursors
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‘Non-local predictors for storm Alex
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Synoptic situation 2020-10-02 12:00
UTC associated with storm Alex.
Geopot height at 500 hPa and IVT. Blue
dashed isolines and red solid lines are
showing the corresponding 500 hPa
anomaly with respect to the seasonal
climatological average which is then
projected onto the non-dimensional
Z500 non-local index
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Non-local EPE precursors for N-Italy ﬂ»'
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SON Precursor Patterns
Z500 lag 3 precursor Z500 lag 2 precursor Z500 lag 1 precursor Z500 lag 0 precursor
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Set up of the hybrid model (MaLCox)

A Machine Learning model predicting Conditions for eXtreme precipitation (MaLCox) has been
trained from IFS CTRL hindcast 24-360h (2000-2020) predictors, on each forecast lead time.
For each lead time ~ 5000 days of which ~350 EPEs days (7% occurrence)

Non-Local Predictors; (2500, V850, IVT) EU-ATL EPE composites anomalies
Local Predictors; based on domain averages over N-IT

Direct Predictors; volume of rain predicted over N-IT

Climatological ; day of the year

Target : EPE (yes/no) defined as a day in which one or more warning areas aare exceeding the
99° of daily precipitation during rainy days in 1991-2020. Based ARCIS dataset (high-resolution
gridded precipitation of N-IT).
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Benchmark to beat: Forecast of EPE obtained with IFS HRES direct model output 3000
Test period: 2018-2022 with HRES predictors (~70 EPEs days ) _ 471’( X o
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The tricky problem of reducing complexity (and overfitting), and accounting for classes imbalance, was addressed setting
class_weight to “balanced_subsample” and ccp_alpha to 0.001



Hybrid model architecture and predictors .
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Grazzini et al. 2023, in preparation

Predictors Climate Direct Local
Class

Non-Local
Grazzini et al. 2023
TABLE 1 Table showing the list of predictors. Predictors are subdivided according with their type and usage in
the two step of MalCoX model
Variable Description Units RF model Class
fcst IVTmag  IVT (module) normalized anomaly index lead times from 0 to -2 days EPE(y/n) Non-Local
fest_Z500 Gepot. normalized anomaly index at 500 hPa lead times from 0 to -2 days EPE(y/n) Non-Local
fest V850 Meridional wind normalized anomaly index at 850 hPa lead times from O to -2 days EPE(y/n) MNon-Local ca t 1 c at 3
IVTe Daily mean of zonal component of integrated water vapour transport kgs 'm™'  EPE(y/n) Local
IVTn Daily mean of meridional component of integrated water vapour transport kgs 'm~'  EPE(y/n) Local leferen t EPES
TCWV Daily mean of total column water vapour kgm? EPE(y/n) Local
R Received: 5 March 2019 Revised: 9 July 2019 Accepted: 6 August 2019 Published on: 7 October 2019
Mslp Daily mean of mean sea level pressure hPa EPE(y/n) Local e —
Volf Daily volume of rain over the target domain m? EPE(y/n) Direct Quarterty Joumal of the ==
RESEARCH ARTICLE Royal Metearological Society o
Juld Day of the year (Julian date) EPE(y/n) Climate
Oes50 Daily mean of equivalent potential temperature at 850hPa K Classification  Local . s .
Extreme precipitation events over northern Italy. PartI: A
ABa500-850 Daily minimum of delta ©e(500-850)hPa K Classification  Local . . . . . . .
systematic classification with machine-learning techniques
Bpv2 Daily mean of © on dynamical tropopause (pv2) K Classification  Local
Taudmax Daily maximum of convective adjustment time scale h Classification  Local Federico Grazzini'?® | George C. Craig! | Christian Keil'® | Gabricle Antolini® | Valentina Pavan®

CAPEdmax  Daily maximum of CAPE Jkg! Classification  Local



Predictors importance vs lead time: predictability implications '»'
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FC+24 BAS_train:0.98 nEPE: 352 / BAS_test:0.80 nEPE: 70
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Verification : test dataset, average precision score
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Average probability of MalLCoX prediction when EPE is observed ..ves ro wearnes
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Case study : Marche flash-flood 15/09/2022

ARCIS OBS: 2022-09-15 nwa > Q99: 4 Cat: 3
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1402761000 = Volf

137 = 1IVTn

0.06 = fcst_Z500_leadO
30.3 = TCWV_med

258 = vjuld

0.8 = fcst_V850_leadO
356 = IVTe

0.57 = fcst_V850_leadl
1010 = mslp

—0.23 = fcst_V850_lead3
0 = fcst_V850_lead?2
0.18 = fcst_Z500_leadl
0.04 = fcst_Z500_lead2

—0.27 = fcst_Z500_lead3
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SHAP values for : 15-09-2022
fix) =1

+0.1

0.0 0.2 0.4 0.6 0.8 1.0
E[f(X)] =0.04
SHapley Additive exPlanations (Lunnberg and Lee, 2017)
how each feature contributed to the RF hybrid forecast



Case studies: Northern Tuscany flood
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___C;s—é__sjcud_iés:
Northern Tuscany
flood 15/12/2022

Count

Rain volume prediction diagram

EPE Volume [m?3]
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Conclusions and outlook

 MalLCoX provides a complementary
way to predict EPE probabilities. In
addition, inform on the atmospheric
driver causing the event. ML
approach help to increase trust in
the forecast incorporating past event
statistic

* Expand the training dataset with all
(independent) EPS members of
ECMWEF reforecast

* Explore the possibility to build a
model for each waning areas or use
methods to infer the probability over
each WA

EPE probability
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Emilia-Romagna event (ll) — 16/17 May 2023 D+4 forecast
RFmodel IC: 12-05-2023
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