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Imate ata ma“ageme“t Ready to use climate projections
High resolution scenarios of climate hazards up to 2100.
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Ready to use weekly and monthly forecast

High resolution subseasonal and seasonal 90 days outlook
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CLIMATE INTELLIGENCE

H2020 CLINT OUR MISSION

The main objective of CLINT is the development of an Artificial

| |
Intelligence framework composed of Machine Learning
techniques and algorithms to process big climate datasets for

e
i CLINT

improving Climate Science in the detection, causation, and

attribution of Extreme Events (EEs), namely tropical cyclones,

heatwaves and warm nights, droughts, and floods. The CLINT Al
framework will also cover the quantification of the EE impacts
on avariety of socio-economic sectors under historical,

forecasted, and projected climate conditions, and across
A I / M l f ra m e w 0 r k different spatial scales (from European to local), ultimately
developing innovative and sectorial Al-enhanced Climate
Services. Finally, these services will be operationalized into Web
Processing Services, according to the most advanced open

- - - -
data and software standards by Climate Services Information
D et e ct I o “ / c a u satl o n /Att rI h u t I o “ Systems, and into a Demonstrator to facilitate the uptake of
project results by public and private entities for research and
Climate Services development.

Extreme Events + impacts
$2S + Projections

15 partners
2021-2025 ExTREME Evers Hotspors




EXTREME EVENTS

Tropical Cyclones
Heatwaves and Warm Nights
Extreme Droughts
Compound and Concurrent EE

AND THEIR IMPACTS

Water-Food-Energy Nexus




CLIMATE
INTELLIGENCE

AI-ENHANCED
CLIMATE SCIENCE

CLIMATE SERVICES
INFORMATION SYSTEMS

Feeemeccc e —-
Femmemm e _ . ——.——-—-

\

PN

~
- -
~ - ~

~ ~
1 1
[ 1
1 1

e N

1
- ~ -
- ~ -

e L P

AI-ENHANCED WEB  AI-ENHANCED CLIMATE
PROCESSING SERVICES SERVICES DEMO

AlI-ENHANCED
CLIMATE SERVICES

1 CLINT

v CLIMATE INTELLIGENCE



Rhme delta

Douro basin .
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Near real-time
attribution of EE

NEAR REAL-TIME
~ ATTRIBUTION OF

EXTREME WEATHER

EVENTS IS POSSIBLE

E STUDY:
REAL-TIME CLIMATE RISK
MANAGEMENT

Near real-time attribution studies can
inform the non-scientific post-event
review of extreme weather events.

For example, a Parliamentary Standing
Committee was convened by the Indian
government to investigate the causes
of the extreme rainfall and subsequent
flooding in Chennai and present potential
solutions.

If provided in near real-time, when the
government is making decisions about
disaster recovery and rec Qsﬁucﬁun,
attribution information, including

The Chennai attribution study concluded
that no effect of human-induced climate
change was detected, instead adding
that this was a very rare event that has
occurred in the past.

This information can shift the focus

from a perceived “external threat” like
climate change to the city planning and
management systems in place that can be
improved to prevent future disasters.

| |
Implemented by ECMWF as part of The Copernicus Programme
an\ Climate
§ Change Service

Raising Risk Awareness Project 2017

April 2023

Spain/Morocco HW
Event: April 26-28
Attribution: May 9
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Challenges in developing an
Al-Enhanced operational demonstrator
of sub-seasonal and seasonal forecasting
of detection and attribution
of heatwaves and warm nights

Scientific - Technical - Computational - (Communicational)



Scientific

Improve Detection
Improve Forecast

Improve Attribution
of Heatwaves/Warm nights

o Define & Detect H/WN
o Indices: many definitions of Heatwaves
o  Drivers (causation & detection)

e ML Forecast framework

o Data driven/forecast postprocessing/hybride.
o Seamless S2S ?

e Attribution
o Existing Frameworks/Methods
eg Oldenborgh et al. 2021, Leach et al. 2021.
o Not many references using ML
o Which ones are applicable to forecast?

van Oldenborgh et al. 2021 Pathways and pitfalls in extreme event
attribution.

Leach et al, 2021. Forecast-based attribution of a winter heat wave
within the limit of predictability.



o Define, Detect and Forecast

a) Polynomial regression b) Compute Ms and find maximum
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Prodhomme, C., Materia, S., Ardilouze, C., White, R. H., Batté, L., Guemas, V., ... & Garcia-Serrano, J.
(2022). Seasonal prediction of European summer heatwaves. Climate Dynamics, 58(7), 2149-2166.



Forecast skill

“Useful information at the

regional scale up to two
months ahead for THWM

integrated over one, two or
three months for the whole
European domain, the
Mediterranean region and
Eastern Europe.”

Prodhomme, C., Materia, S., Ardilouze, C.,
White, R. H., Batté, L., Guemas, V., ... &
Garcia-Serrano, J. (2022). Seasonal prediction
of European summer heatwaves. Climate
Dynamics, 58(7), 2149-2166.



Define, Detect and Forecast

HW & TN DETECTION: INDICES & FORECAST SKILL .

Key achievement of first phase -> analysis of multi-
model seasonal forecast skill of TNs, to complement
existing literature on HWs (e.g. Prodhomme et al, 2021):

» Torralba V., S. Materia, L. Cavicchia, C.
Prodhomme, M. C. Alvarez-Castro, E.
Scoccimarro, and S.Gualdi. Seasonal forecast
skill of European warm nights. In preparation.

60N

40N

Providing a benchmark for ML-based techniques
Identify where ML-enhancements are most needed (e.g.
Scandinavia, parts of central Mediterranean)

Ensemble mean correlation
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MS90 & D3.1 (2022) Skill (correlation score) of the CMCC SPS3.5 seasonal
Definition of indices, seasonal forecast skill and analysis prediction system for Heat Wave Magnitude index (HWMI)
of indivdual events (e.g. summer of 2022). and Tropical Night Magnitude index (TNMI).

Period: 1993-2016. Start date: 1st of May. Benchmark: ERA5

Alvarez-Castro M. C., Torralba V., L. Cavicchia, E. Scoccimarro,

Torralba V. et al. Seasonal forecast skill of European warm nights. et al. EGU23 (2023) and $.Gualdi. Predictability of the 2022 extreme summer at

Zaninelli P.G., Barriopedro D., Drouard M., Garrido-Pérez J.M., Pérez-Aracil J., Fister D., Garcia-Herrera R., Salcedo- seasonal scale (In preparation)
Sanz S., Alvarez-Castro M.C.: Deep learning techniques applied to an attribution study for heatwaves in the Iberian
(‘}\-0 C L l T Peninsula. General Assembly of European Geosciences Union (EGU) 2021. 23-28 abril 2023, Viena, Austria. Torralba V., S. Materia, L. Cavicchia, C. Prodhomme, M. C.
L 1 ) . . L . , . ’ Alvarez-Castro, E. Scoccimarro, and S.Gualdi. Seasonal
o\lo) cLIMATE INTELLIGence Drouard M., Pérez-Aracil J., Barriopedro D., Zaninelli P.G., Garrido-Pérez J.M., Fister D., Salcedo-Sanz S., Garcia- forecast skill of European warm nights. (In preparation)

Herrera R.: S2S prediction of summer heatwaves in the Iberian Peninsula using convolutional networks. General
Assembly of European Geosciences Union (EGU) 2021. 23-28 abril 2023, Vienna, Austria



Forecast postprocessing (ML member picking)

A Training B Evaluation C  Verification
Al Pattern identification and labelling B.I Hindcast skill analysis C.1 Test with the inde-
- b pendent ensemble
f
test
P l_q_‘_—l?_' ensemble tast
) - Clustering ==\ I ensemble
reanalysis NNy N/ July-Aug I independent
| e ] \ \ SLP July-Aug ensemble
2
Akl Labels Atmospheric Sk-2000, Tom !
July, Aug AtRidge NAO+ teleconnections July-Aug
SLP NAO- Atlow SLP, 2500, T2m
A.2 Define predictor c B.2 Ensemble subsampling \
sST
predictor atmospheric
patterns toloconnection repeat steps
\ = first guess b, d,f,g
Similarity _/
april SST — Ppre-forecast aalyEhs
data
Set 1: Training & Evaluation (1902-2008) Set 2 Verification (1980-2016)

Carvalho-Oliveira, J., Borchert, L. F., Zorita, E., & Baehr, J. (2022). Self-organizing maps identify
windows of opportunity for seasonal European summer predictions. Frontiers in Climate, 4.



Data driven ML forecasting

TASK 2.4: MACHINE LEARNING FOR EXTREME EVENTS FORECASTING

* Sub-seasonal drought forecasting via machine learning to leverage climate data at different spatial scales
* Forecast total precipitation for the next 30-days and then compute SPI

* Three frameworks developed in Rijnland: Nifio Index Phase Analysis (NIPA) + Extreme Learning Machine (ELM), Feed Forward Neural
Network (FFNN), Convolutional Neural Network (CNN)

Precipitation forecasting Drought forecasting
10 Results:
son 0.9 :
/“/"/"j‘j'; "\“\"\ 0.8 * ELM models forecast precipitation better than
Y ake \er 8-7 ECMWEF benchmark for every month

* All the models outperform ECMWF forecasts in

5
/ 4 terms of SPI
L : g:; | I I I | | II | | I I || There is not an only ML model forecasting better
01 I I I I I SPI throughout all the year
z 0.0
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

HELM ®mFFNN =CNN mECMWF

Hits rate (-)
o

* Other recently started works:
* Forecasting tropical cyclones probability in the next 5 days with CNN

K”\.o * Forecasting daily rainfall for the next 30 days with LSTM in Rijnland
€3 CLINT

CLIMATE INTELLIGENCE
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From Befort, D. J., Brunner, L., Borchert, L. F., O’reilly, C. H., Mignot, J., Ballinger, A. P., ... & Weisheimer, A. (2022).
Combination of decadal predictions and climate projections in time: Challenges and potential solutions. Geophysical
Research Letters, 49(15), e2022GL098568..




TASK 5.1: ATTRIBUTION OF EXTREME EVENTS ot

Al Developments E%
°® Anomaly of temperature EI.‘/)

* ML algorithms trained in natural world and applied to present-day climates ¢ . N 2020715
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T T Anomaly detection for a 4-day heatwave: temp.

anomaly exceedance above a threshold that would
have never been experienced in a natural world (2C)

Anomaly
(j C L | N T Drouard et al. (2023). EGU23-5742 -
J CLIMATE INTELLIGENCE Fister et al. (2023). EGU23-7457 €GU

Zaninelli et al. (2023). EGU23-6732




Technical

Data availability

Data handling and
processing

Coherency

Data availability

©)

@)

Exploit large reanalysis datasets
m [ERAS (1950-now, 0.25°, Hourly)
m ERA20C  (1900-2010,1°, 3-Hourly)
m 20CrV3 (1836-2015, 1°, 3-Hourly)
Exploit large S2S datasets
m (38 (seasonal), S2S project
m ML benchmarks datasets ?
m But hindcast period is 20y (need more)

Data handling and processing

O

©)
©)

Burst & Lagued forecast members
(complicates processing & intercomparison)
Object storage: NCZarr (NetCDF-c+zarr)
CDO libraries optimisation/validation

Coherency

©)
©)
©)

Daily data calibration (Quantile Mapping)
Forecast calibration/Indicator definition
Between forecasted indicators (if ML training
specific to each one)




Description of the C3S seasonal multi-system

This table shows the centres that provide data to this project together with the latest configuration of their systems. Follow the link of each Data Provider for specific model description.

Status on
) 13 Feb 2022

ECMWF
(ecmf)

UKMO
(egrr)

Météo-France(3)
(Ifpw)

DWD
(edzw)

CMCC
(emcc)

NCEP
(kwbc)

JMA
(ritd)

ECCC (cwao) (7)
CanCMa4i

(component of
CanSIPSv2.1)

ECCC (cwao) @
GEM5-NEMO

{component of
CanSIPSv2.1)

Time range
(forecasts and
hindcasts)

215 days

215 days

7 calendar
months

6 calendar
months

6 calendar
months

215 days

215 days

214 days

214 days

Resolution of model

Teo319/L91

Dynamics:T¢319 cubic octahedral
grid

Physics: 0320 Gaussian grid (36 km)

91 levels in vertical, to 0.01hPa (80km)

N216/L85

0.83° x 0.56° (~ 60km in mid-
latitudes)

85 levels in vertical, to 85km
TL359/L137 (0.5°)

137 levels in vertical, to 0.01hPa

T127 (~100 km)
95 levels in vertical, to 0.01hPa
approx 0.5° lat-long

46 levels in vertical, to 0.2hPa
T128/L64 (~1°)

64 levels in vertical, to 0.02hPa

TL319 (approx. 55km)
100 levels in vertical, to 0.01hPa
T63 (~2.8° lat-long)

35 levels in vertical, to ThPa

~1.1° lat-long (~110 km)

85 levels in vertical, to 0.1hPa

Forecast initial
conditions

1st of month

each day of month

© e

last and penultimate Thursday of previous month

1st of month

1st of month

1st of month

each day of month

members initialised every 6

18h UTC)

every day of month

1st of the month

1st of the month

® 60 0OOO

:0h, 6h, 12h and

Forecast
ensemble size

51 members

2 members/day‘4)

25 members each

1member

50 members

50 members

4 members/day

5 members/day

10 members

10 members

Hindcast
initial conditions

1st of month

1st, 9th, 17th, 25th

of month

last and penultimate Thursday of previous

month
1st of month
1st of month

1st of month

every 5 days (8)

members initialised every 6 hours (at Oh, 6h,

12h and 18h UTC)

2 start dates lagged by 15 days (6)

1st of the month

1st of the month

Hindcasts
ensemble size

25

7 members/start

time

12 members each

1 member

30 members

40 members

4 members/start date

5 members/start date

10 members

10 members

Hindcast
period

1981-2016

1993-2016

1993-2018

1993-2019

1993-2016

1993-2016

1993-2016

1993-2020

1993-2020

Hindcast
production
schedule

fixed

on-the-fly("

fixed

fixed

fixed

fixed

fixed

fixed

fixed



B A W | th Q Uan t | | e M d p p | 1 g “Our overall recommendation would be the use

of versatile, easy to implement BA methods for

ST i those cases for which the use of MOS and PP
Advantages. SUItﬂb'B to dal Iy & g IObaI methods cannot be carefully tested by experts.”

CDFt . more adapted to “Unseen” Manzanas, R., et al. Statistical adjustment, calibration

and downscaling of seasonal forecasts: a case-study

future distributions for Southeast Asia. Clim Dyn 54, 2869-2882 (2020).

Bias-adjustment
Global with ERAS at 1°

Downscaling
ERA5 (0.25°), ERA5-Land (0.1°)

- sub-seasonal and seasonal forecast systems for the
Reglﬂnal fOr now energy sector. Deliverable D4.4, H2020 S2S4E (2017).




4-system Multimodel

Unit Multiple
1 system X 4
1 variable X 4
x16
2.2 Go 35 Go

1.5h processing time for a “Unit”
(1°x1°, 50 members, 180 days)
2.4 To Fsx + 96 CPU + 360 Go RAM




e Performance/Cost ratio
o  Acceptable performance and cost

com putational o  Time of delivery vs original forecast

o  Costs vs skill (forecast’s added value)

(c I ol d) Cost-function including HW/WN - CS tailoring

e Budget

o Cloud benefits
m [nfrastructure-as-Code (laC)

Pe rfo rmance / cost m Serverless (compute environment)

m [Easy testing/scaling

o Project necessary resources are unspecified
B“ d get m Project budget will shape the demo




Seasonal BA-Calibration batch chain (cloud):
1 model 1 variable 50 members Global 1°

t
| <><><><><><>

Time : , , : : , SSD
(TH5) 90 122 A4 25 135 20 1 FSX200
_______ (125-1000 MB/S)
............................ 5 5
(Code) T5 _________________

.
-------

(6 Lead times)
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“HPC serverless”architecture (for one “Unit”)
&
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“ML post-processing can act as a bridge between the
physical representation of the atmosphere provided by
numerical weather prediction and the decision-making
requirements of end-users.”

Haupt et al. 2021 Towards implementing artificial intelligence post-processing in
weather and climate, Phil. Trans. R. Soc. A 379: 20200091.
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