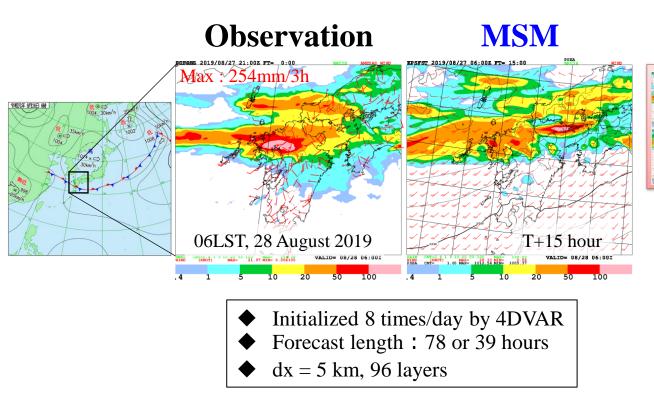
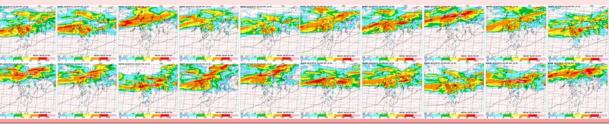
Clustering technique considering temporal coherence of ensemble members

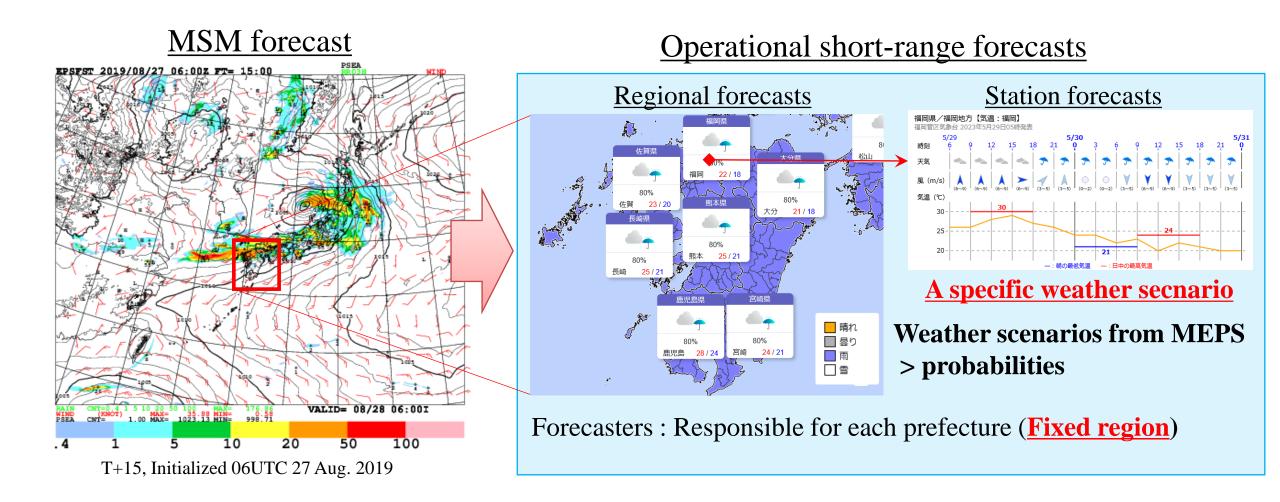

Kosuke Ono

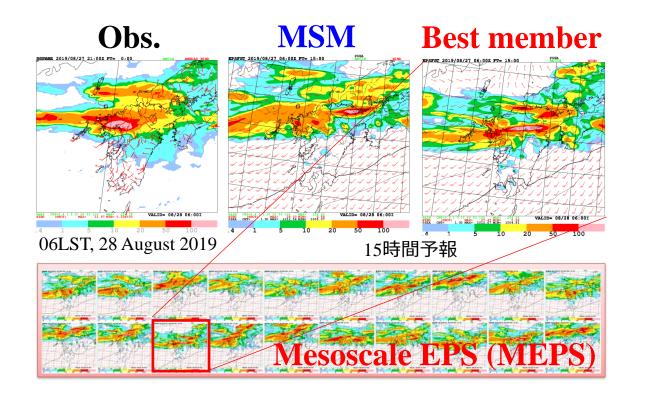
Meteorological research institute, Japan meteorological agency


2/15: Background (1/3)

Regional model and EPS at JMA

for short range forecast (~1 or 2 days ahead)

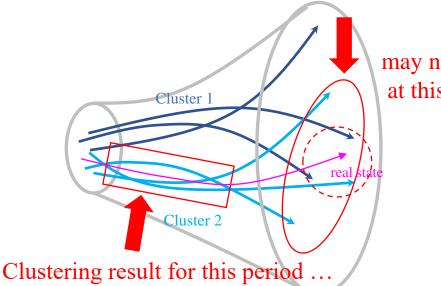

Mesoscale EPS (MEPS) Ono et al. (2021, QJRMS)


- $\checkmark~20$ perturbed runs and control run (MSM)
- ✓ Initial and lateral boundary perturbations : SVs
 - ✓ SPPT has installed since March 2023
- $\checkmark\,$ Same model settings as MSM
 - ✓ dx=5km, 39 h forecasts, 4 time/day
- ✓ In operation since June 2019

3/15: Background (2/3)

JMA's Operational short-range forecast

Deterministic forecasts from MEPS



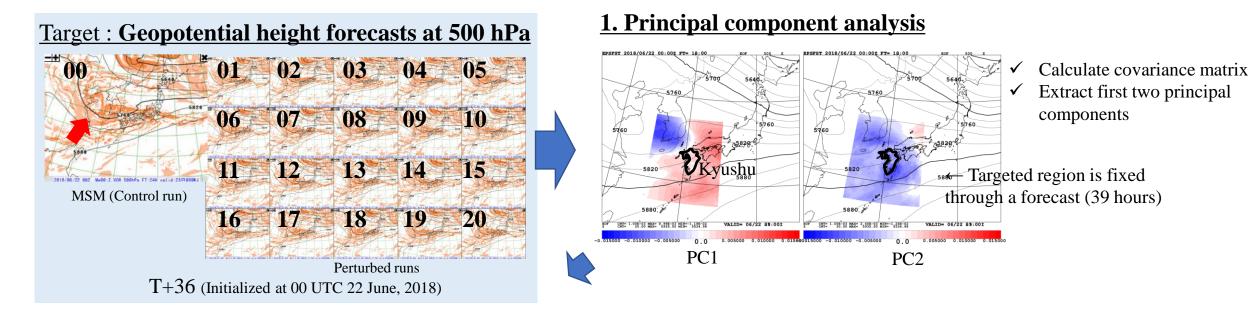
For operational forecasters

- 21 forecasts : too much information
- Reduce information : Clustering

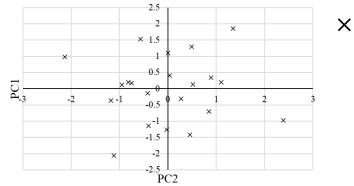
Clusters for weather scenarios

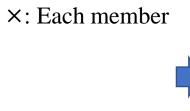
• Intra-cluster members : change over time

may not be optimal at this time


5/15: Purpose

Purpose


- Summary of background
 - Forecasters are
 - ✓ Responsible for *a fixed domain and stations*
 - ✓ Issue forecasts as *a specific scenario*
 - ✓ Scenarios from MEPS
- Important points for clustering
 - \checkmark Fixed domain during a forecast
 - ✓ Consider temporal coherency of intra-cluster members
- Purpose of this study
 - ➢Procedures
 - ≻Advantages


6/15: Method (1/4)

Clustering method

<u>2. Project all members onto 2-D phase space</u>

3. Clustering

PCI

2.5

2

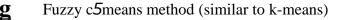
• ×

× 1.5

0.5

-0.5

×-1


-1.5

-2

PC2

-2.5

× -1

× Cluster 1

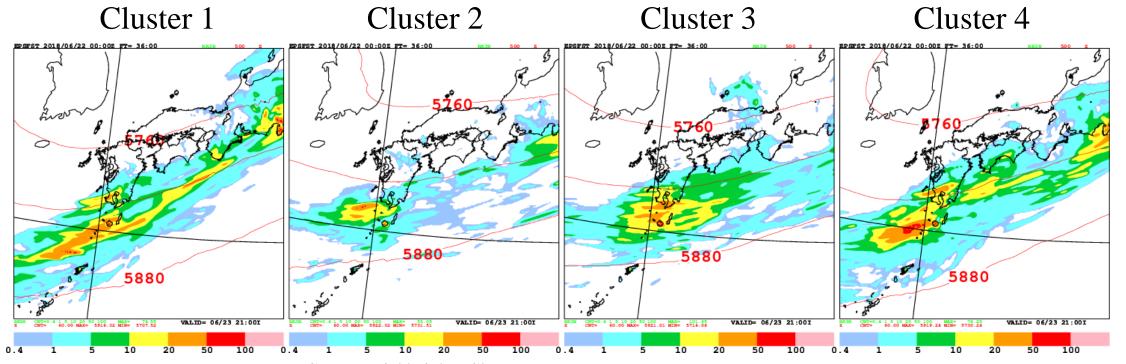
Cluster 2

× Cluster 3

Cluster 4

×

×: Each member●: Cluster centroids


\checkmark 4 clusters

✓ Cluster-mean used as a scenario

7/15: Method (2/4)

Clustering results at T+36

Initialized at 00 UTC 22 June, 2018

Geopotential height : Cluster mean 3 hour precipitation : Cluster mean with probability matching

✓ Different pressure trough scenarios

✓ Corresponding to trough, different precipitation scenarios forecasted

8/15: Method (3/4)

Clustering results every 3 hours

Geopotential height at 500 hPa (NO temporal connection)

Forecast	Members in	Members in	Members in	Members in
lead time	Cluster 1	Cluster 2	Cluster 3	Cluster 4
0	01 06	11 16	00 03 04 05 07 09 10 12 18	02 08 13 14 15 17 19 20
3	00 01 05 09 12 18 20	03 04 17	02 08 10 11 15 16 19	06 07 13 14
6	00 02 07 13 14	08 10 11 15 16 19	03 04 05 12 17	01 06 09 18 20
9	01 05 06 09 17 18 20	00 02 07 13 14	03 04 12	08 10 11 15 16 19
12	00 06 07 13 18	01 02 04 05 09 20	10 11 12 14 15 19	03 08 16 17
15	08 15 16	00 02 05 06 10 18	07 11 12 13 14 19	01 03 04 09 17 20
18	05 06	07 11 12 13 14 18 19	00 01 02 03 04 08 09 10 17 20	<u>15 16</u> temporally correlated
21	00 02 07 08 11 12 13 14 18 19 20	01 03 09 10	15 16	04 05 06 17
24	00 02 11 12 13 18 19 20	01 03 08 09 10	04 05 06 17	07 14 15 16
27	01 02 03 08 09 10	07 11 13 18 19 20	14 15 16	00 04 05 06 12 17
30	02 14 15 16	00 04 05 06 12	07 11 13 18 19 20	01 03 08 09 10 17
33	02 14 15	04 05 19	07 11 13 16 18 20	00 01 03 06 08 09 10 12 17
36	04 05 19	09 14 15	02 07 11 13 16 18 20	00 01 03 06 08 10 12 17
39	09 10 14 15 17	00 01 03 06 08 12	04 05 19 20	02 07 11 13 16 18

Note : Cluster numbers assigned randomly

Link clusters: Similarity of intra-cluster members

<u>1. Compare clusters</u>

Forecast	Members in	Members in	Members in	Members in
lead time	Cluster 1	Cluster 2	Cluster 3	Cluster 4
21	00 02 07 08 11 12 13 14 18 19 20	01 03 09 10 🔸	15 16	04 05 06 17
24	00 02 11 12 13 18 19 20	01 03 08 09 10	04 05 06 17	07 14 15 16

2. If two or more candidates ... Small members in previous time

Forecast	Members in	Members in	Members in	Members in
lead time	Cluster 1	Cluster 2	Cluster 3	Cluster 4
21	00 02 07 08 11 12 13 14 18 19 20	01 03 09 10	15 16	04 05 06 17
24	00 02 11 12 13 18 19 20	01 03 08 09 10	04 05 06 17	07 14 15 16

<u>3. Rearrange each cluster</u>

Forecast	Members in	Members in	Members in	Members in
lead time	cluster 1	cluster 2	cluster 3	cluster 4
21	04 05 06 17	15 16	01 03 09 10	00 02 07 08 11 12 13 14 18 19 20
24	04 05 06 17	07 14 15 16	01 03 08 09 10	00 02 11 12 13 18 19 20

These procedures conducted from (T+3 and 0) to (T+39 and T+36)

Clusters with temporal connection

Forecast	Me	mbe	ers in	1			Me	emb	ers i	in		Me	emb	ers i	in							Me	mb	ers i	n								
lead time	clu	ster	1				clu	ster	2			clu	ster	3								clu	ster	4									
0	01	06					11	16				00	03	04	05	07	09	10	12	18		02	08	13	14	15	17	19	20	/			
3	06	07	13	14			03	04	17			00	01	05	09	12	18	20				02	08	10	11	15	16	19					
6	00	02	07	13	14		03	04	05	12	17	01	06	09	18	20						08	10	11	15	16	19	/					
9	00	02	07	13	14		03	04	12			01	05	06	09	17	18	20				08	10	11	15	16	19						
12	00	06	07	13	18		03	08	16	17		01	02	04	05	09	20					10	11	12	14	15	19	\langle					
15	00	02	05	06	10	18	08	15	16			01	03	04	09	17	20					07	11	12	13	14	19						
18	05	06					15	16				00	01	02	03	04	08	09	10	17	20	07	11	12	13	14	18	19				~	
21	04	05	06	17			15	16			_	01	03	09	10							00	02	07	08	11	12	13	14	18	19	20	
24	04	05	06	17			07	14	15	16		01	03	08	09	10						00	02	11	12	13	18	19	20			/	
27	00	04	05	06	12	17	14	15	16		_	01	02	03	08	09	10					07	11	13	18	19	20		/				
30	00	04	05	06	12		02	14	15	16		01	03	08	09	10	17					07	11	13	18	19	20		(
33	04	05	19				02	14	15			00	01	03	06	08	09	10	12	17		07	11	13	16	18	20						
36	04	05	19				09	14	15			00	01	03	06	08	10	12	17			02	07	11	13	16	18	20)				
39	04	05	19	20			09	10	14	15	17	00	01	03	06	08	12					02	07	11	13	16	18		K				

Characteristics

- \checkmark Same members compose same cluster for a certain period
- ✓ Number of intra-cluster members changes with time

11/15: Result (2/4)

Provide robustness of scenarios

Forecast	Me	mbe	ers in	n			Me	emb	ers i	n	N	ſeı	nbe	ers i	n							Me	emb	ers i	n						umber of membe	
lead time	clus	ster	1				clu	ster	2		c	lus	ter	3								clu	ster	4						which mo	oved between clu	sters
0	01	06					11	16			0	0	03	04	05	07	09	10	12	18		02	08	13	14	15	17	19	20		ר	
3	06	07	13	14			03	04	17		0	0	01	05	09	12	18	20				02	08	10	11	15	16	19		→ 11	5	
6	00	02	07	13	14		03	04	05	12 1	17 0	1	06	09	18	20						08	10	11	15	16	19			→ 5	Large sur	m
9	00	02	07	13	14		03	04	12		0	1	05	06	09	17	18	20				08	10	11	15	16	19			→ 2		
12	00	06	07	13	18		03	08	16	17	0	1	02	04	05	09	20					10	11	12	14	15	19			→ 9		
15	00	02	05	06	10	18	08	15	16		0	1	03	04	09	17	20					07	11	12	13	14	19			→ 8		
18	05	06					15	16			0	0	01	02	03	04	08	09	10	17	20	07	11	12	13	14	18	19		→ 5		
21	04	05	06	17			15	16			0	1	03	09	10							00	02	07	08	11	12	13	14 18 19 20	→ 6	ר	
24	04	05	06	17			07	14	15	16	0	1	03	08	09	10						00	02	11	12	13	18	19	20	→ 3		
27	00	04	05	06	12	17	14	15	16		0	1	02	03	08	09	10					07	11	13	18	19	20			→ 4		
30	00	04	05	06	12		02	14	15	16	0	1	03	08	09	10	17					07	11	13	18	19	20			→ 2	Small su	ım
33	04	05	19				02	14	15		0	0	01	03	06	08	09	10	12	17		07	11	13	16	18	20			→ 5		
36	04	05	19				09	14	15		0	0	01	03	06	08	10	12	17			02	07	11	13	16	18	20		→ 2		
39	04	05	19	20			09	10	14	15 1	17 0	0	01	03	06	08	12					02	07	11	13	16	18			→ 3	.	

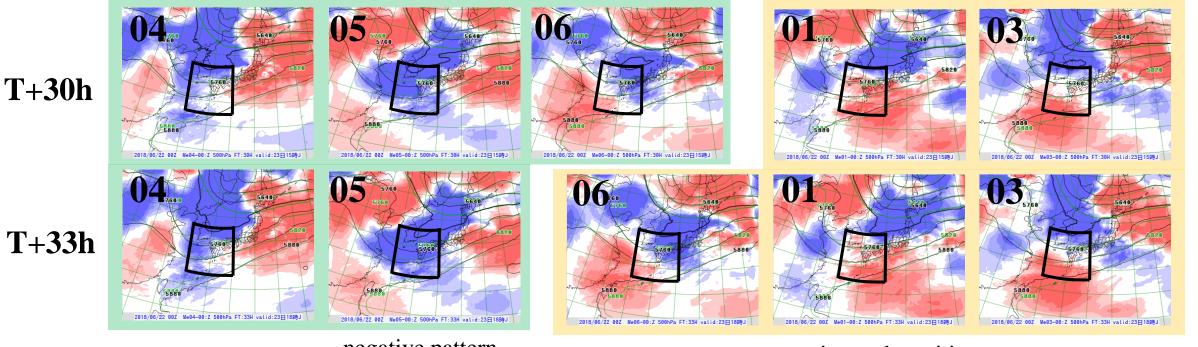
Sums	Intra-cluster members	Scenarios (cluster-mean)	
Small sums	Coherent	Robust with time	
Large sums	Diversive	NOT robust with time	

Useful for forecasters to use clusters

12/15: Result (3/4)

Optimal intra-cluster members

Perturbations (Perturbed run - control run) for geopotential height at 500 hPa


Cluster 1

Cluster 3

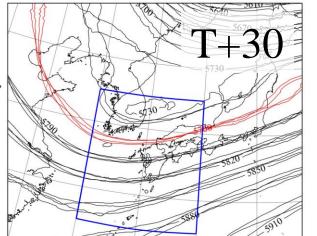
10

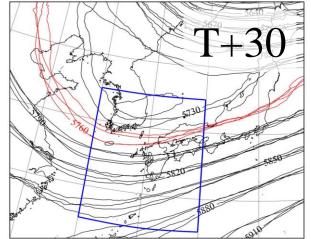
7.5 5.0 2.5

-5.0 -7.5 -10

negative pattern

negative and positive


- \checkmark Accommodate the time-varying perturbation structure,
- ✓ Provides well-divided scenarios for forecasters in charge of a fixed region


Well-divided scenarios

Forecast	Me	mbe	rs ir	ı			Me	mb	ers	in		Me	emb	ers	in							Me	mb	ers	in							
lead time	clus	ster	1				clu	ster	2			clu	ster	3								clu	ster	4								
0	01	06					11	16				00	03	04	05	07	09	10	12	18		02	08	13	14	15	17	19	20			
3	06	07	13	14			03	04	17			00	01	05	09	12	18	20				02	08	10	11	15	16	19				
6	00	02	07	13	14		03	04	05	12	17	01	06	09	18	20						08	10	11	15	16	19					
9	00	02	07	13	14		03	04	12			01	05	06	09	17	18	20				08	10	11	15	16	19					
12	00	06	07	13	18		03	08	16	17		01	02	04	05	09	20					10	11	12	14	15	19					
15	00	02	05	06	10	18	08	15	16			01	03	04	09	17	20					07	11	12	13	14	19					
18	05	06					15	16				00	01	02	03	04	08	09	10	17	20	07	11	12	13	14	18	19				
21	04	05	06	17			15	16				01	03	09	10							00	02	07	08	11	12	13	14	18	19	20
24	04	05	06	17			07	14	15	16		01	03	08	09	10						00	02	11	12	13	18	19	20			
27	00	04	05	06	12	17	14	15	16			01	02	03	08	09	10					07	11	13	18	19	20					_
30	00	04	05	06	12		02	14	15	16		01	03	08	09	10	17					07	11	13	18	19	20					
33	04	05	19				02	14	15			00	01	03	06	08	09	10	12	17		07	11	13	16	18	20					
36	04	05	19				09	14	15			00	01	03	06	08	10	12	17			02	07	11	13	16	18	20				
39	04	05	19	20			09	10	14	15	17	00	01	03	06	08	12					02	07	11	13	16	18					

✓ Intra-cluster members : different between T+12 and 30

Spaghetti diagrams of 4 clusters for geopotential height at 500 hPa

Using clustering results at T+12

Summary

• New clustering technique

- Forecasters' requests : Weather scenarios from MEPS
 - ➢ Fixed region and 3-hour clustering
 - ➤<u>Temporally connected</u>
- Provides
 - Robustness of clustering scenarios
 - ≻Well divided scenarios

More details

- (Not shown) Improvement from MSM on RMSE for geopotential height
 - See Ono (2023, WAF)

Ongoing works and future tasks

• Ongoing works

- Cluster using various elements for severe weather cases
 - Except for 500 hPa geopotential height
- Select best scenario
 - Check my poster presentation

• Future tasks

- Change the number of clusters with time
- (Hopefully, select best member)