

ECMWF: What does the future hold?

#UEF2023

Florian Pappenberger, Director of Forecasts & Deputy Director-General (thanks to all my colleagues for input)

@FPappenberger

ECMWF

Established in 1975, Intergovernmental Organisation

- 23 Member States | 12 Co-operating States
- 400+ staff

24/7 operational service

- Operational NWP 4x HRES+ENS forecasts / day
- Supporting NWS (coupled models) and businesses

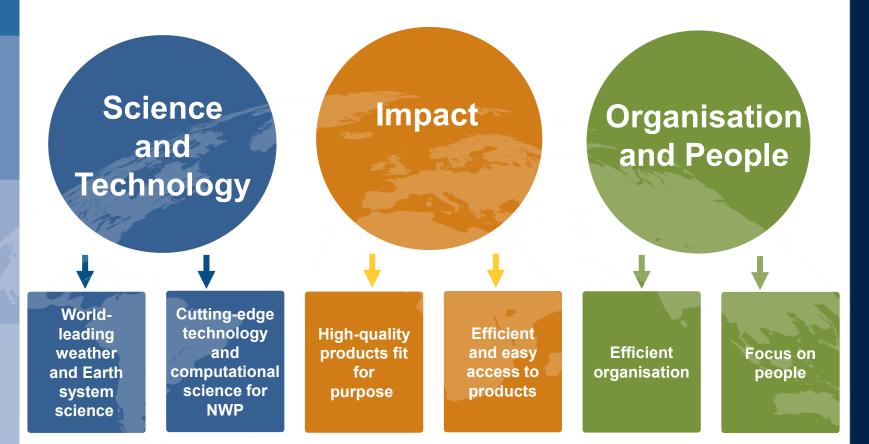
Research institution

- Experiments to continuously improve our models
- Reforecasts and Climate Reanalysis

Operate Two EU Copernicus Services

- Climate Change Service (C3S)
- Atmosphere Monitoring Service (CAMS)
- Support Copernicus Emergency Management Service (CEMS)

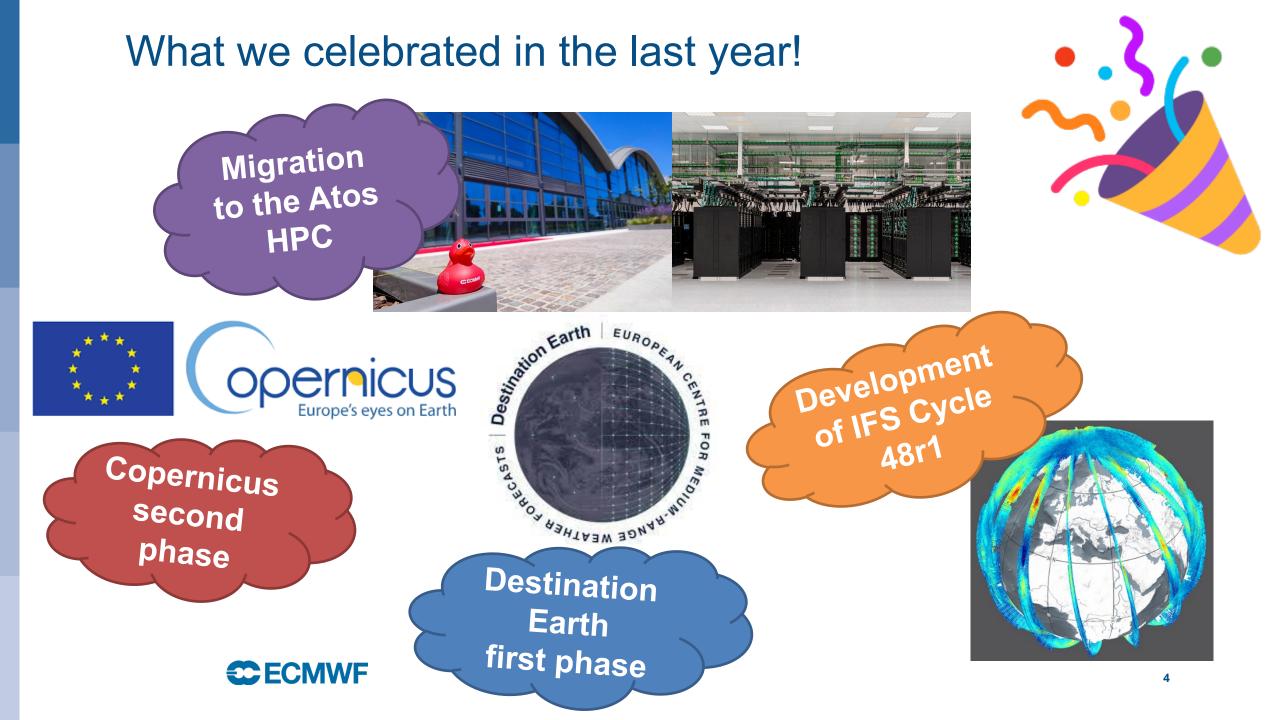
Destination Earth


- Operates the DestinE Digital Twin Engine (DTE)
- Operates two Digital Twins

Vision: ECMWF produces cutting-edge science and world-leading weather predictions and monitoring of the Earth system in close collaboration with the members of the European Meteorological Infrastructure, for a safe and prosperous society

opernicus

ECMWF Strategy 2021 - 2030


ECMWF STRATEGY 2021–2030

The strength of a common goal

C ECMWF

Integrated Forecasting System (IFS) Upgrades

Spring 2021 47r2		Spring 2023 48r1 Atos	2024 49r1		
Single precision (HRES, ENS, ENS-Ext) Unified vertical resolution (ENS, ENS-Ext to L137)	Moist physics upgrade Observation use and data assimilation (DA) changes	ENS resolution increase: 9 km Daily ENS-Ext ensembles (100 members daily) Multi-layer snow scheme Interactive Hybrid Linear Ozone OOPS (multi-executable)	Improved surface New ocean–sea ice Updated land fields Implementation of SPP SEAS6: 100 ENS members ERA6		
		Improved COMPO suite			

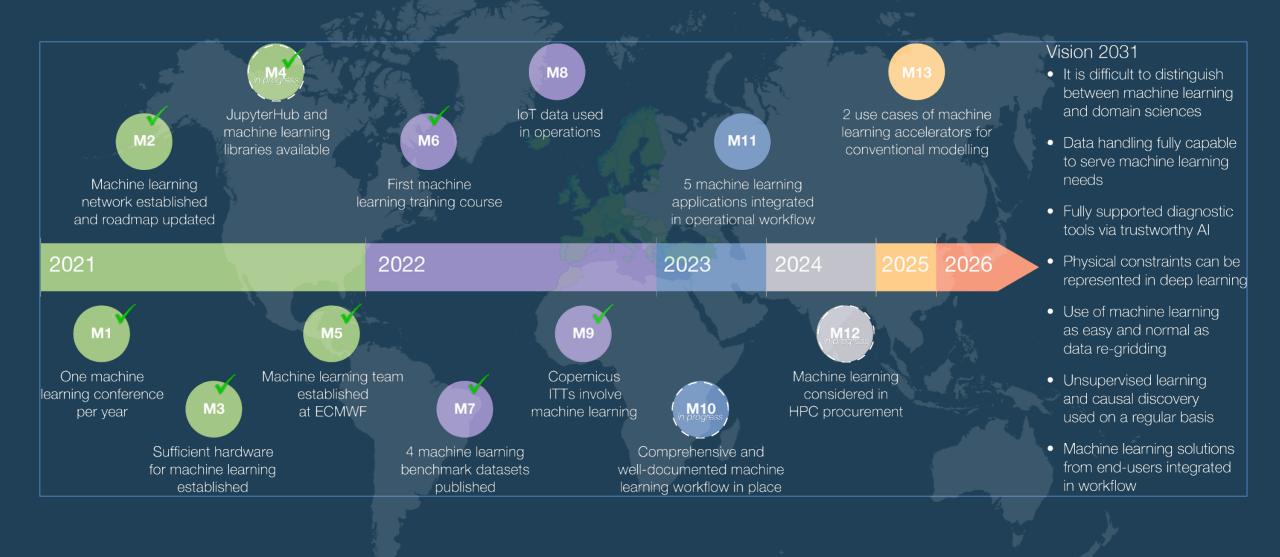
Upcoming changes – Cycle 48R1

- Planned for Q2 2023
- Test data currently available

HRES	ENS	ENS-Ext	Seasonal (ECMWF component)
9km (no change)	18km → 9km	36km (no change)	No change until SEAS6
10 days (step 240)	15 days (step 360)	46 days (step 1104)	
4x daily (no change)	4x daily (no change)	Twice weekly → Once per day	
137 model levels	137 model levels	137 model levels	
	50 members	100 members	
		Reforecast twice per week (one medium- range, one long- range)	

48r1 ENS scorecard

rmsef ccaf crps pread diags


🔹 n.hem 🗳 s.hem 🗳 tropics 🗳 europe 🕛 n.atl 🗇 n.amer 🗇 n.pac 🗇 e.asia 🗳 arctic 🖓 antarctic (🗳 all)

https://sites.ecmwf.int/ifs/scorecards/scorecards-48r1ENS.html

shaded boxes for confidence boundaries: () 95%) 50%/95%) 95%/99.7% ||) significance triangles ||) bars

		n.hem			a.hem			tropica			europe			arctic	
	rmsef	ccaf	crps	rmsef	ccaf	crps	rmsef	ecaf	crps	rmsef	ecaf	crpa	rmaef	ecaf	crpa
anz	50														
	250														
	500														
	850														
msi															
1. I.	50														
	100														
	250														
	500														
	850														
	50														
	100														
	250														
	500														
r.	250														
	700														
2 <u>t</u>															
10 10 000 se															
swh															
mwp															
obz	50														
	100														
	250														
	500														
	850														
ţ	50														
	100														
	250														
	500														
	850														
Π.	50														
	100		<u></u>				<u></u>								
	250														
	500														
	850														
r.	250														
	700														
2t															
2d															
toc 10ff											1				
101															
ц р.															
swh															
10 6@ se	a														

What the Machine Learning Roadmap has achieved so far

- 😳 ECMWF 🚍 💵 📧 🚼 🚍 📰 💵 🚍 🔚 🔳 🔳 🚍 🚍 🔚 💷 🖾 🖾 🖬 🖬 🖬 🖬 🖬 🖉 🖾 📾 👘 👘 🖉 🕷

Since ECMWF launched its ML Strategy: a busy and FAST evolving landscape

ECMWF's role in EU's DestinE initiative

Towards a Digital Twin Earth

ECMWF is responsible for the delivery of:

The DestinE **<u>Digital Twin Engine</u>** (DTE):

 common approach for a unified orchestration of Earth-system simulations and their fusion with observations, requiring large-scale HPC and data handling resources

Weather-induced and Geophysical* **Extremes Digital Twin**:

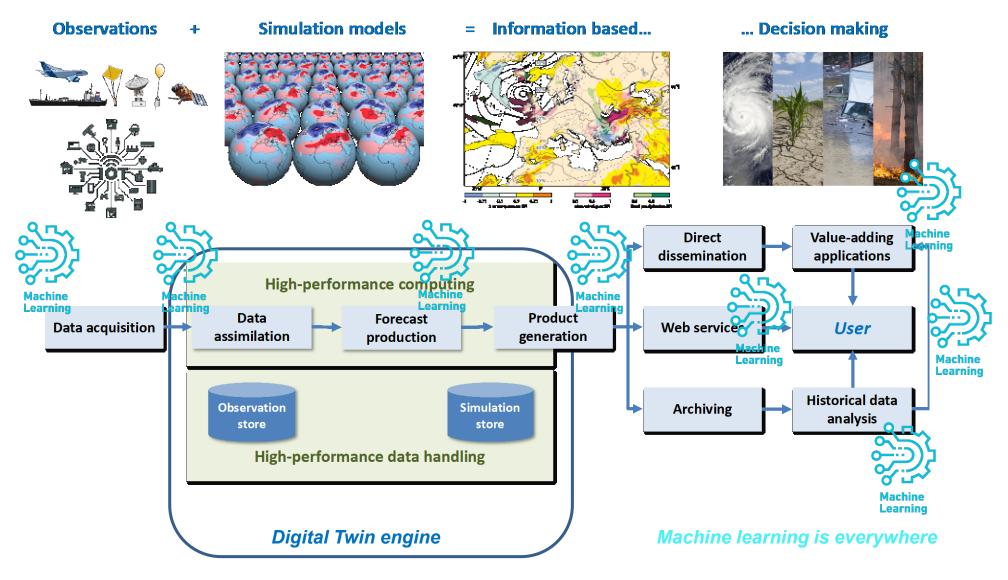
 capabilities and services for the assessment and prediction of environmental extremes (a few days ahead)

ECMWF + Météo-France and partners from **22 European countries**

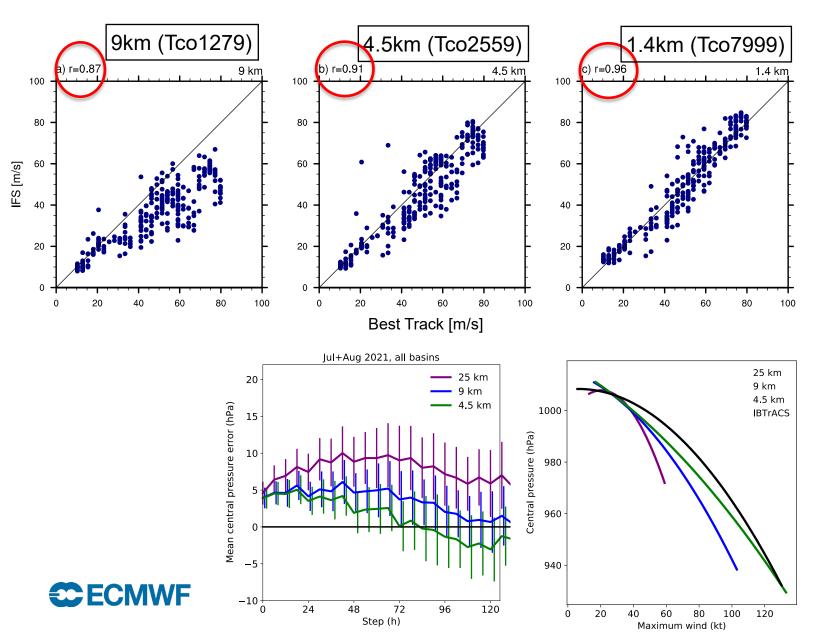
<u>Climate</u> Change Adaptation **<u>Digital Twin</u>**:

 capabilities and services in support of climate change adaptation policies and mitigation scenario testing (multidecadal)

CSC and partners from 6 European countries



*not in phase 1



Funded by the European Union

Digital Twin engine & Digital Twins & Use cases

TC intensity better predicted as resolution increases from 9 to 1.4km

INCITE22 simulations

4 TCs (Irma, Ida, Florence, Teddy) Improved max wind speed

Inna Polichtchouk

DestinE daily forecasts Aug-Jul 21 and Jan-Feb 22

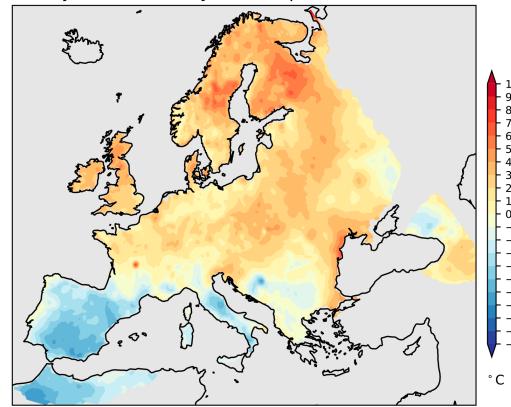
- Reduction of intensity RMSE at 4.5km
- Better MSLP/vmax relation

Michael Maier-Gerber

• ECMWF: entrusted entity for C3S and CAMS

- Modernized Data Store platform under development and toolbox powered by ECMWF eartkit package
- ECMWF: Contractor to Joint Research Centre (JRC) for operating:
 - CEMS-EWS (Flood)
 - CEMS-EWS (Fire)

- ECMWF-EU Contribution Agreement 2021-2027
 - CAMS and C3S
 - 71% of the activities procured, with significant role for NMHSs in EU MSs, Norway and Iceland
- On behalf of JRC:
 - CEMS Hydrological Forecast Computation
 - CEMS Fire Danger Forecast Computation



EUROPEAN STATE OF THE CLIMATE

2022

climate.copernicus.eu/esotc/2022

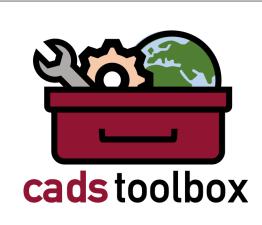
Anomaly in warmest daytime temperature in March 2022

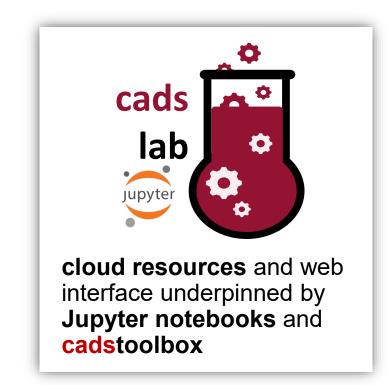
Data source: E-OBS Credit: C3S/KNMI Reference Period: 1991-2020

Copernicus Climate Change Service European State of the Climate | 2022 PROGRAMME OF THE EUROPEAN UNION COPERPICUS

ECMWF

Warmest daytime temperature anomaly (°C) in March 2022, relative to the average for the 1991–2020 reference period. Data source: E-OBS. Credit: KNMI/C3S/ECMWF


Serving our users: moving towards a Climate and Atmosphere Data Store (CADS)


- Already in place: API; interoperability with MARS, ESGF; WPS, ftp, compliant with INSPIRE and WMO WIS
- CADS project will modernise the ADS and CDS: operational by January 2024

improved **interface** and **exploration** of evergrowing **catalogue** of data

Python development environment for data **access**, **analysis** and **visualisation** powered by **earthkit** tools

Contribution to **WEkEO**, a Copernicus cloud-based Data and Information Access Service (DIAS) in collaboration with EUMETSAT, Mercator-Ocean and EEA

Status of the European Weather Cloud

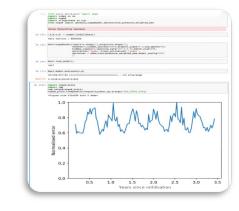
EUROPEAN WEATHER CLOUD

CLOUD COMPUTING-BASED INFRASTRUCTURE, FOCUSED ON THE NEEDS OF THE METEOROLOGICAL COMMUNITY

CECMWF **THE EUROPEAN** WEATHER CLOUP

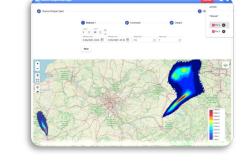
www.europeanweather.cloud

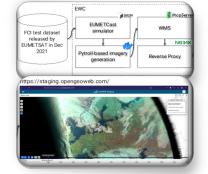
- Pilot project started 2019 by ECMWF and EUMETSAT
- Currently in operational ramp-up
- ECMWF on-going deployment of the new operational infrastructure in ECMWF Bologna Data Centre
- EUMETSAT running on public cloud infrastructure



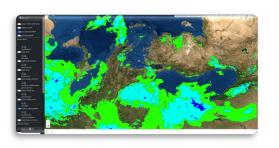
European Weather Cloud Use Cases Examples

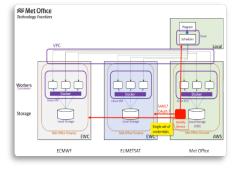
OGC web map services integrating maps in DWD's Geoportal Forecast and climatology of cloud cover for Energy and Spatial sectors Météo-France Hosted on both ECMWF and EUMETSAT


Oxford University Jupyter notebook environments for ML on weather & climate data sets


Virtual laboratories for training courses and workshops

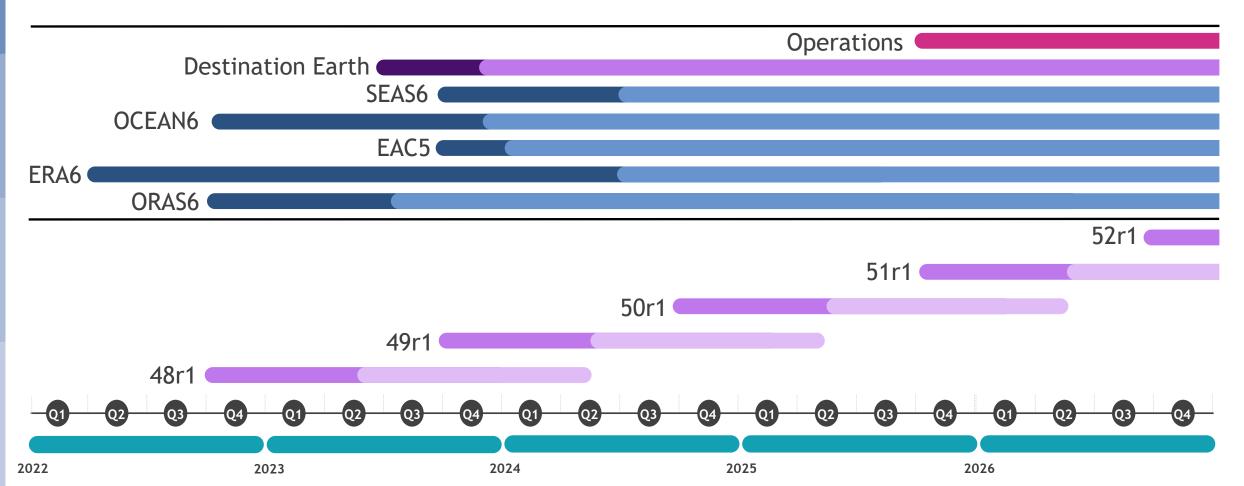
See free in the DBS


KNMI Climate Explorer setup on EWC


Atmospheric dispersion modelling from RMI

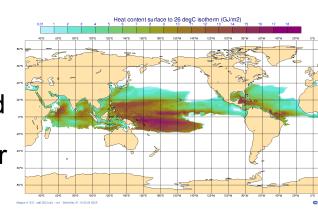
NordSat developing imagery generation tools for satellite products

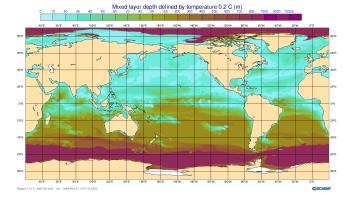
South-East European Multi-Hazard Early Warning Advisory System Common Interface Platform

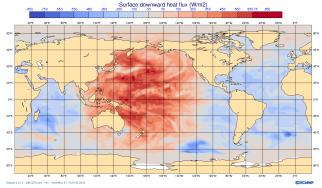


UK Met Office demonstrates Data Proximate Compute use case

Migration to GRIB2 Roadmap


- Expected to switch to full GRIB2 during 51r1 implementation
- Could be an earlier dedicated "technical" cycle (50r2?)
- More details in the article in ECMWF newsletter Spring 2023
- Sign up to our mailing list: <u>mtg2@lists.ecmwf.int</u>


Ocean GRIB2 output with the NEMOV4 / SI3 upgrade (work in progress)


- With the upgrade of the ocean/sea-ice component of the coupled forecasting system to NEMOV4 / SI3 ocean fields in GRIB2 will become available for dissemination and archived in MARS
 - \circ all forecasting systems
 - \circ the ocean analysis system
- New IO-server based on MultIO
 - + direct FDB output
- Data will be coded as an unstructured grid
- Interpolation to other grids such as regular or Gaussian grids will be supported via MIR
 EUROPEAN

- Both 3D fields and 2D fields will be available
 - Examples of 3D fields:
 - Water temperature
 - Salinity
 - Currents
 - Water density
 - ..

- Examples of 2D fields:
 - Sea surface temperature
 - Sea surface height
 - Mixed layer depth with multiple different definitions
 - Upper ocean heat content
 - Sea ice concentration
 - Sea ice thickness
 - Sea ice temperature

Open Data at ECMWF

Free and open charts including meteograms (OpenCharts) https://apps.ecmwf.int/webapps/opencharts

Free and open data available on public https service and in Microsoft Azure and Amazon AWS



Contents of the ECMWF archive catalogue provided with an open licence (CC-BY-4)

Reduced fees for some licence types

Access here: <u>https://data.ecmwf.int/forecasts</u> Supporting Documentation: <u>https://confluence.ecmwf.int/display/UDOC/ECMWF+Op</u> <u>en+Data+-+Real+Time</u>

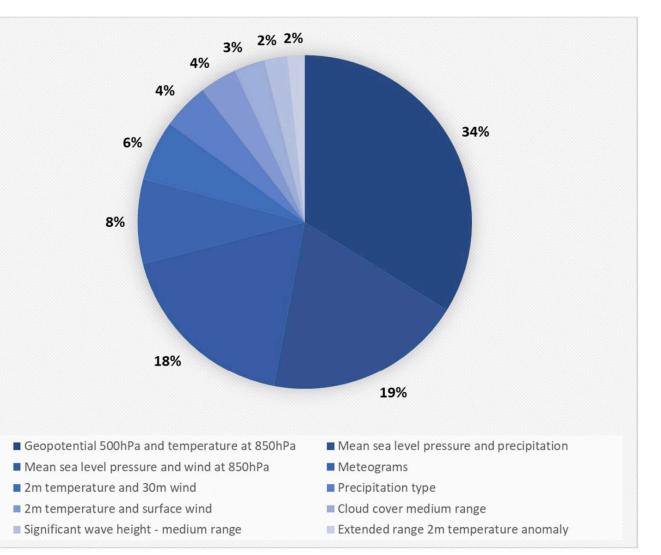
Open Charts products served daily

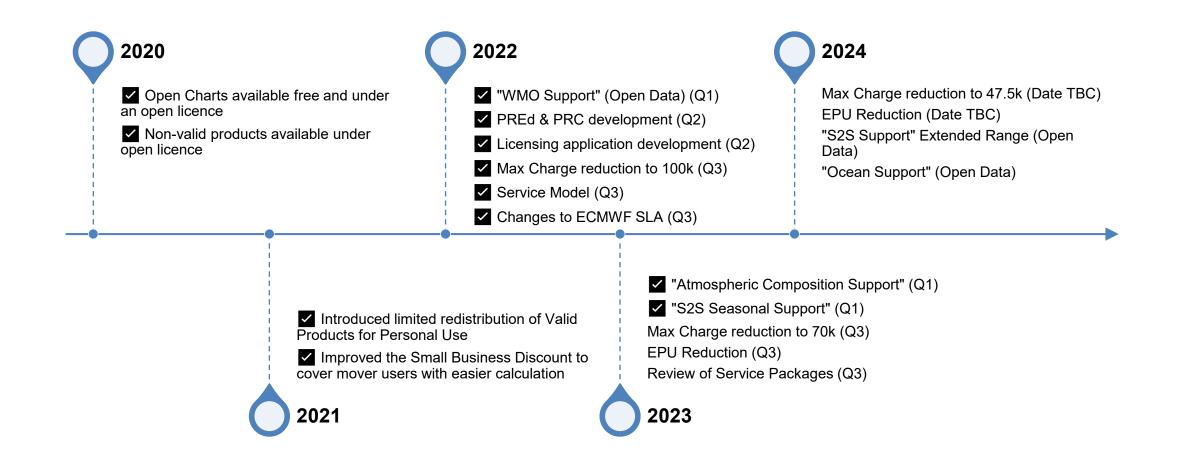
				Sear	ch site Q	🛿 Help 🛛 Emma Pidduck 🗸
Home	About	Forecasts	Computing	Research	Learning	Publications
	Charts D	Datasets Qualit	ty of our forecasts	About our forecasts	Access to fo	recasts
		Open data	1			
 View Datasets search 		The products listed a their use is governed Terms of Use. This n	Access the free version >			
			ct to appropriate attrib	,	auscu	Licence:
			0 1	lucts, please visit the E	CMWF Support	General
		Portal and User Doc	umentation.			

Important: higher resolution versions of the same products are available via the **Product Requirements Catalogue** and are subject to the ECMWF Standard Licence Agreement.

Product description

These products are a subset of the full Catalogue of ECMWF Real-time Products and are based on the mediumrange (high-resolution and ensemble) and seasonal forecast models.


Products are produced at 0.4 degrees resolution in GRIB2 format unless stated otherwise.


Open Data Usage Statistics - ECMWF Open Charts

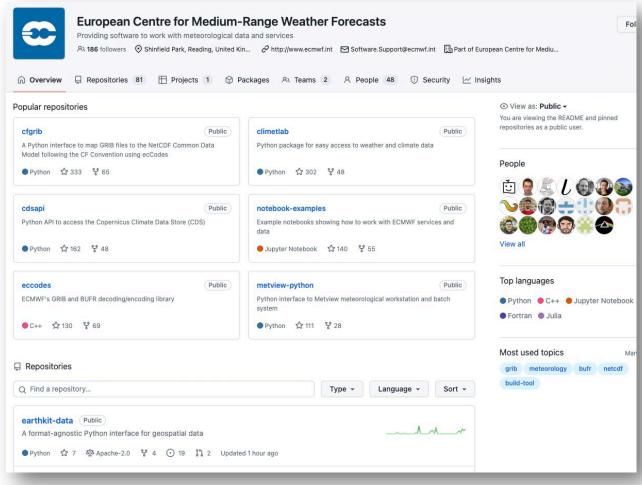
- 200,000 products served per day with 20% of the users located within the Member and Co-operating States.
- 92% of products accessed are within the short- and medium-range.
- ECMWF Jupyter Notebook function is available for 20% of Open Charts.
- The Jupyter Notebook repository is the 4th most popular out of 60 ECMWF software repositories.

Access the charts here: <u>https://charts.ecmwf.int/</u>

Move to Open Data - Timeline

ECMUF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Python and Jupyter and GitHub


A new Software Strategy

- Open development with interaction and feedback from the community
- Several packages already on GitHub
- Software componentisation
 - First components:
 - earthkit-data
 - earthkit-maps

JupyterHub

 Project restarted after move to Bologna by gathering and analysing requirements from 80+ Jupyter users

THE STRENGTH OF A COMMON GOAL