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Context: Crop water stress and irrigation

Agriculture accounts for 70% (ref. world bank) of all freshwater withdrawals
globally

Drought is more frequent due to global climate change

⇒ Crop irrigation is more often a necessity

The management of water use in irrigation is important
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Context: Irrigation management using decision
support tools (DSTs)

Crop water stress DSTs are real-time models that compute a water stress
index of the crop using weather data.
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State of the art in the usage of irrigation DSTs

Without uncertainty information: based on deterministic weather forecasts
(i.e single value weather forecast)
With uncertainty information: using ensemble of historical weather data
(accounts for uncertainty but has drawbacks).
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Objective 1 of the study
Introduce the use of ensemble prevision (IFS-EPS) in irrigation DSTs and compare its perfromance to
ensemble of historical observations (EHO)
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Figure 1: Caption
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Materials

Numerical weather predictions used is IFS-EPS (zone: World, validity
period: 15 days, size: 51 members, horizontal resolution: 18Km,
initialization: 00:00 UTC)

Ensemble of historical weather observation used: 12 years of prior
observations for the desired period

WaLIS water balance model (developed by Inrae and IFV) for vines irrigation

Summer period (June to September), years 2018-2019-2020-2021

10 sites in the south of France
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Materials: Weather Data Base
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Same for EHO but with 12 member ensemble consisted of the observation of
the 12 previous years
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Results: comparison approach EHO-M vs approach
IFS-EPS-M (particular case)
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Results: comparison approach EHO-M vs approach
IFS-EPS-M (Generalization)

Conclusion (objective 1): The use of ensemble prevision in irrigation DSTs has better

performance in comparison with the use of historical weather observations.
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Ensemble prediction are not perfect and need
sometimes post-processing

Existence of systematic bias error in the prediction sometimes

Dispersion error in the ensemble sometimes

Statistical post-processing methods to address these issues
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Objective 2 of the study
Investigate the effect of two post-processing approaches (Approach IFS-EPS-M-PP vs Approach
IFS-EPS-PP-M).
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EMOS method for post-processing of ensemble
prevision

Let X1,X2, ...,XN be the members of the ensemble X.

Assumption on the distribution of the ensemble to post-treat (e.g normal
distribution).

Fit the parameters of predictive distribution N(a+ bX , c + dV (X )) by
minimizing the CRPS on a training data set.

Usually the training data set is a moving window consisting in T training
days before the day J of the prevision to post-treat.
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Results (Post-processing EMOS)

4 out of 10 tested sites shows improvement in CRPS after Post-Processing
Improvement becomes significant starting lead ∼ 5
Generally, no significant difference between the two post-processing
approaches
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Results (Post-processing EMOS)

6 out of 10 tested sites: raw ensembles as good as or better than
post-processed ones
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Conclusion (objective 2):

Post-processing of ensemble water stress index could show improvement in
ensemble previsions locally in some sites.

Globally on all sites post-processing the water stress index ensemble prevision
could improve the predictions by reducing the dispersion error and the bias.

No advantage in post-processing directly the water stress index (more
computationally expensive in operational use).

Open question and Perspectives:

Why in some situations the post-processing does not enhance the raw
ensemble forecasts ?

Evaluate and compare the different sources of uncertainty (DST Parameters
vs Prior weather Observations vs Forecast).
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