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Air-Sea Heat Fluxes Affect TC Structure and Intensity
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 12-hour GOES-East Visible, Cat 1 → Cat 4
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The Air-Sea Interface in Low Winds

Surface Heat and Momentum Fluxes

Hurricane Sam (2021)

The Air-Sea Interface in High Winds

Wind Stress = −𝜌𝑢′𝑤′

SHF = 𝜌𝑐𝑝𝜃
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Science Questions and Approach:

• Q1: Are bulk turbulent heat flux physics sufficient to represent heat fluxes in 

high winds? 

• A1: Compare direct covariance SHF and LHF to bulk SHF and LHF calculated 

using the COARE 3.6 algorithm.

• Q2 (Ongoing): Can we improve heat flux predictions in high winds by 

incorporating sea spray physics?

• A2: Add sea spray physics to COARE 3.6 algorithm, calibrate, and test.



Direct Covariance Datasets – OOI and More

DYNAMO Field Campaign
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• Sonic Anemometer

• Momentum flux

• Sonic buoyancy flux 
(~sensible heat)

• Infrared Gas Analyzer

• Latent heat flux

• 20 min averages, hourly

• “Good Data” Values

• Mom flux: 51,000

• SHF: 20,000

• LHF: 17,000 – but very few 
for U10 > 20 m/s!



Sensible and Latent Heat Show Divergent Behavior in High Winds
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Heat Fluxes with Spray
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Model derivation in: Barr, Chen, and Fairall (2023), JAS.
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Spray Physics Explains Divergent Heat Flux Behavior

Sensible Heat Latent Heat



Spray Physics Improves Prediction of  Sensible and Latent Heat Fluxes



Conclusions and Next Steps

• Conclusions
1. Bulk turbulent physics does not seem sufficient for representing heat fluxes in high winds (i.e., 

U10 > 20 m/s).

2. By incorporating spray heat fluxes into the COARE algorithm (ongoing), we anticipate 
improvement in heat flux predictions.

• Next Steps
1. Direct covariance sonic temperature (i.e., buoyancy) flux is routinely measured, but latent heat 

flux is not.  Both are needed to improve parameterization of  heat fluxes with spray.  OOI sites 
are well positioned (e.g., Irminger Sea) and well suited for augmentation with direct 
covariance latent heat flux systems to get these important measurements.

2. The parameters controlling spray generation in high winds are not firmly established.  We need 
observations of  spray, fluxes, and the wave field in high winds and further work to understand 
air-sea-wave coupled physics in this regime.  This will facilitate inclusion of  wave-based spray 
physics in coupled atmosphere-wave-ocean modeling systems.

benjamin.barr@whoi.edu
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Backup: Seastate-Dependent Spray Generation

• Wind-based generation is based on whitecap fraction and assumes a fixed droplet size distribution.

• Barr et al. (2023) introduce an updated sea spray generation function (SSGF) based on Fairall et al. (2009).

Sea Spray Generation Function Spray Mass Flux
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Wind-Wave Properties Used:

• Surface windspeed

• Wave energy dissipation flux

• Significant wave height

• Dominant phase speed

• Mean squared waveslope

• Wind stress
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Backup: Spray in the Fully Coupled System



Backup: Three Stages of  Spray Impact on Intensity

• Stage 1: Spray SHF < 0 everywhere.  Cooling weakens storms.

• Stage 2: Spray SHF > 0 under eyewall.  Warming starts the comeback.

• Stage 3: WS MSLP < NS MSLP.  Net influence strengthens storms.

Spray cooling suppresses eyewall deep convection and intensification.  

Spray warming promotes eyewall deep convection and intensification.
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Backup: Summary of  Spray’s Impact on TC Structure and Intensity

• Stage 1: Spray evaporation cools the BL, suppressing eyewall convection.  Spray weakens storms.

• Stage 2: Spray warms under the eyewall, but this is counteracted by structural inefficiency.  Spray weakens 
storms.  However, increasing spray heating under the eyewall eventually invigorates deep convection.

• Stage 3: Continued warming by spray fuels deep convection, producing a stronger storm.

θe lost
θe lost



Backup: Coastal Interaction Affects Waves and Spray

U10N Wave Dissipation

Hurricane Michael

Open 

Ocean

U10N Wave Dissipation

Coastal

Spray Mass Flux

Coastal 

Shoaling/

Breaking

Open Ocean



ControlControl

MsprX2

MsprX4

Control

MsprX2+DecS

Backup: Sensitivity to Uncertainty in Spray Generation (Florence)
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