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Outline:

Ocean Wave modelling at ECMWEF.

Revision of wind — wave interaction for surface momentum exchange.
Revision of wind — wave interaction for heat and moisture exchanges.
Overall impacts of waves feedback on ECMWF medium range forecasts.

ERAG preparation.
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1. Wave modelling at ECMWF

0001: WAVE HEIGHT SCATTER INDEX from 12UTC from January 1993 to February 2024 at all buoys
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1. Wave modelling at ECMWF

In the context of its Earth System Model, the wave model plays an active role in many
exchanges between atmosphere and ocean in ECMWF Earth System Model.

Atmospheric
model
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(simplified view of the
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Wave model (ecWAM)
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NOTE:

The coupling to NEMO/LIM
is only for the long forecasts
(i.e. not yet in the analysis!
See update for ERA6 below)

Sea ice model (LIM)
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* Stokes drift: surface values + SWH and MWP to estimate profile
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2. Impact of ocean waves on the surface stress

Drag Coefficient over open oceans

x 103 [F- . 15000000 Drag coefficient (C,)
L TR with respect to wind speed
. " 1000000 .
. E Operational model (June 2019)
Lo 100000
6 @ [+110000
5 3 -
S} 11000 o 25
B o]
it o 2
; ! R -
© S O  Binned Data
o 05- ——— COARE 30|
Q4L ——COARE40
— ECMWF
| -0.5 .
. : 0 5 10 15 20
S I B R U, (M)
1 0 10m wind speed (m/s) 55
o e o84 st 610 240 by Edson et al., 2013

C,is sea state dependent !

> It is now accepted that the drag coefficient should generally attained
maximum values for storm winds but should level or even decrease for
very strong winds, namely in tropical cyclones or intense mid-latitude
windstorms.
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Model C, fits well observations
for winds up to 20m/s
But it is too high for larger winds
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L
=]
o

o

o

[=]
o
]
N H I
\
L
| uE
L 2
\
\
A\
\
L EEESTR

=]
a

0 10 20 30 40 50 60
wind speed U/, (m/s)

5



An adhoc modification of the

wind input source was implemented in CY47R1 (June 2020), whereby the

Charnock coefficient estimated by the wave model and therefore the drag coefficient sharply reduce for

large winds (> 30 m/s).

With the wave model, Charnock is expressed as
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~ Originally with
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Charnock has to reduce quite sharply for winds (U,,) above 33 m/s
and then tails off for very high winds:
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Revised sea state dependent momentum flux: recent model change
Recent wave model changes have resulted in a better control of the drag for strong winds:
« The latest one was a reduction of the Charnock coefficient for winds above 33 m/s (June 2020).

« This is quite essential now that we can show that 4.4km runs yields much better tropical cyclones:

Drag coefficient v 10m wind speed:

Tco2559 forecast step 24 to step 78 by 1 hrs
start date 2020-08-24, 12 UTC
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10m wind speed, Hurricane Laura 27 August 2020
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Revised sea state dependent momentum flux: CY49R1 planned for autumn 2024

We revisited the problem with the inclusion of a model for the role of gravity-capillary waves on the surface

stress and the inclusion of a nonlinear wind input growth rate (see Peter Janssen’s presentation)

Drag coefficient
dependency on wind speed
for heat (C,)
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FIGURE 1 Drag coefficient (Cd) over the North Atlantic and corresponding 10 m wind speed during Hurricane Lee. Forecasts from the
operational analysis of 8 September 2023, 00 UTC were performed at the experimental TC02559 resolution (4.4 km). Results are shown
aggregating all hourly forecast steps from 12 to 72 hours for (a) Cycle 48r1, with black crosses showing mean Cd values for given wind
speeds, and (b) Cycle 48r1 (blue) and Cycle 49r1 (red) for the binned mean values and error bars for one standard deviation on either side of

the mean.
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Impact on surface wind speeds

CY49R1 will help address the known underestimation of extreme ocean winds
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3. Impact of ocean waves on heat and moisture fluxes

Sea state dependency on momentum is also affecting heat and moisture fluxes because
in the atmosphere model those transfer coefficients depend on the squared root of Cd
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3. Sea state heat and moisture fluxes

Following Janssen (1997, TM239), ocean waves can also have a direct impact of the exchange of heat
and moisture, enhancing their exchange for windy (i.e. wavy) conditions:
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FIGURE 2 The same as Figure 1, but for the heat exchange coefficient Ch.
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Change in temperature RMSE meridional cross section for different forecast ranges:
generally positive

a Revised wind input b Sea-state-dependent heat and ¢ All wave-model-related
moisture fluxes changes
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FIGURE 3 Normalised change in temperature forecast root-mean-square (RMS) error, measured against own analysis, showing the impact

of (a) the revised wind input, (b) sea-state-dependent heat and moisture fluxes, and (c) all wave-model-related changes, for combined winter

and summer seasons. Cross-hatching indicates statistical significance at a confidence level of 95%. Blue areas indicate a reduction in RMS 12
and hence a beneficial impact from the contributions.



Change in 2m Temperature RMSE for different forecast ranges:
generally positive

24-hour forecasts
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FIGURE 4 Normalised change in 2 m temperature forecast root-mean-square (RMS) error, measured against own analysis, showing the
impact of sea-state-dependent heat and moisture fluxes for the combined winter and summer seasons. Blue areas indicate a reduction in

RMS and hence a beneficial impact.
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4. After all those years, what is the impact of waves feedbacks ...

Atmospheric Run analysis + 10-day forecast experiments
model | for JUA 2022 and DJF 2022-23

at Tco399, with or without any feedback

from waves.
The latest model CY49R1 was used.

Wave model (ecWAM)
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Sea ice model (LIM)
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Impact of Impact of waves
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Impact of waves
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5. Plans for next global reanalysis (ERAG)

ERAG6 will be based on CY49R2. Production is due to start in 2025.
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The coupling to NEMO/SI3 will also be done in
analysis outer loops and short-range forecasts
But no fully coupled ocean data assimilation.
Instead use the next ocean re-analysis (ORASG6)

Wave model (ecWAM)
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5. Very beneficial impact of outer loop coupling and current refraction on the
significant wave height scores
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Conclusions

Ocean waves are an active components of the ECMWF Earth System Model.

ECMWEF has been using sea state information for momentum exchange for years.

Extension to heat and moisture fluxes will be implemented in next model cycles (CY49R1).
Direct impact of sea spray on air-sea exchange not yet included.

Coupling to waves is generally beneficial but there is still room for some improvements (tropics).
ERAG should have better surface winds and waves than ERAS.

ecWAM is now open source:

https://github.com/ecmwf-ifs/ecwam
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https://github.com/ecmwf-ifs/ecwam
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