The wave-mediated ocean-atmosphere system

Øyvind Breivik, Ana Carrasco, Alfatih Ali, Mika Malila, Trygve Halsne, Maria Bjørnestad, Gaute Hope, Torunn Seldal, Jean Rabault & Tor Nordam (SINTEF/NTNU)

Small-scale mixing processes in the upper ocean

Turbulent kinetic energy budget $\frac{De}{Dt} = -\underbrace{\overline{\mathbf{u}_{h}'w'}}_{1} \cdot \frac{\partial \mathbf{u}_{h}}{\partial z} - \underbrace{\overline{\mathbf{u}_{h}'w'}}_{2} \cdot \frac{\partial \mathbf{u}_{s}}{\partial z} + \underbrace{\overline{\mathbf{w}_{b}'b'}}_{3} - \underbrace{\frac{\partial}{\partial z} \left\{ \overline{w'u'_{i}u'_{i}} + \frac{1}{\rho_{0}} \overline{w'p'} \right\}}_{4} - \underbrace{\varepsilon}_{5}$

- 1. Shear production
- 2. Stokes production
- 3. Buoyant production
- 4. Turbulent transport
- 5. Dissipation

Wave-driven mixing processes in the upper ocean

Turbulent kinetic energy budget $\frac{De}{Dt} = -\underbrace{\mathbf{u}_{h}'w'}_{1} \cdot \frac{\partial \mathbf{u}_{h}}{\partial z} + \underbrace{\mathbf{u}_{h}'w'}_{2} \cdot \frac{\partial \mathbf{u}_{s}}{\partial z} + \underbrace{\mathbf{w}'b'}_{3} - \frac{\partial}{\partial z} \left\{ \frac{w'u_{i}'u_{i}'}{4} + \frac{1}{\rho_{0}} \frac{w'p'}{b'} \right\} - \underbrace{\varepsilon}_{5}$

- 1. Shear production
- 2. Stokes production (wave-averaged)
- 3. Buoyant production
- 4. Turbulent transport
- 5. Dissipation

Langmuir turbulence

- Occurs due to interaction between waves (Stokes drift) and vorticity
- Enhances mixing in OSBL
- Transports properties
 vertically across OSBL
 May deepen mixed layer

depth

Wave-driven mixing processes in the upper ocean

Soloviev and Lukas (2014)

The bubble-mediated CO₂ flux

~40% of the net global air-sea CO2 flux is mediated by bubbles

Bubble contribution has significant spatial variability

Langmuir turbulence parameterised in

climate models

6

The mixed layer depth of the global ocean component of the Norwegian Earth System model (NorESM) - too thin

de Boyer Montegut et al. (2004)

Min = 10.14 Max = 500.93

Langmuir turbulence parameterised in Climate models

 In the KPP scheme, the turbulent eddy diffusivity of a property X within the ocean surface boundary layer 0 < z < h is parameterized as

$$K_x(z,t) = h(t) \frac{W_x(z/h,t)}{W_x(z/h,t)} G(z/h).$$

 The ocean boundary layer depth h is determined as the shallowest depth at which the bulk Richardson number Ri_b(z) rises above a critical value Ri_c:

$$\operatorname{Ri}_{\mathrm{b}}(z) = rac{(B_{\mathrm{r}} - B(z))|z|}{|\mathbf{u}_{\mathrm{r}} - \mathbf{u}(z)|^2 + V_{\mathrm{t}}^2(z)}$$

 LT effects are parameterized following McWilliams and Sullivan (2000) through an enhancement factor *E*(*La_t*) applied to the turbulent velocity scale as

$$W_{x} = (\kappa u * / \phi) \mathcal{E}(La_{t}) \quad \text{where} \quad \mathcal{E}(La_{t}) = \left[1 + C_{w} / La_{t}^{2\alpha}\right]^{1/\alpha}$$

T-enhanced unresolved turbulence shear: $V_{t}^{2}(z) = \frac{C_{v} N(z) (\kappa u * / \phi) \mathcal{E}(La_{t}) |z|}{\operatorname{Ri}_{c} \kappa^{2}} \left(\frac{-\beta_{T}}{c_{s} \epsilon}\right)^{\frac{1}{2}}$

Table: Description of the four experiments where CNTL is the control run without wave effects. VR12PAR refers to the experiment where Stokes drift profile is **parameterized** from wind, while VR12 and LF17 experiments are coupled with WAVEWATCH III.

Parameterization	Exp.	Enhancement factor $\mathcal{E}(\mathrm{La}_{\mathrm{SL}})$	Unresolved shear	Wave coupling
Large et al. (1994)	CNTL	1	V_t^2	No coupling
Van Roekel et al. (2012)	VR12	$\sqrt{1 + (1.5 La_{SL})^{-2} + (5.4 La_{SL})^{-4}}$	V_t^2	WAVEWATCH III
Li et al. (2017)	VR12PAR	same as VR12	same as VR12	arameterized Stokes profile
Li and Fox-Kemper (2017)	LF17	same as VR12	V ² _{tL}	WAVEWATCH III

 LT enhancement of the buoyancy entrainment at the base of the boundary layer (Li and Fox-Kemper, 2017):

The unresolved turbulence shear is modified:

$$V_{\rm LL}^2(z) = \frac{C_{\rm v}N(z)w_{\rm s}(z)|z|}{{\rm Ri}_{\rm c}} \left[\frac{-\overline{w'b'_{\rm c}}h}{w_{\rm s}(z)^3}\right]^{\frac{1}{2}}$$

The L

Enhanced entrainment buoyancy flux:

$$-\frac{u^{*3}}{h}\left(0.17 + 0.083 \text{La}_{\text{SL}}^{-2} - 0.15 \frac{h}{\kappa L}\right)$$

Add a bit of mixing based on the Langmuir enhancement factor in the KPP scheme ...

Langmuir turbulence parameterised in climate models

Add a bit of mixing based on the Langmuir enhancement factor in the KPP scheme ...

and things improve ...

Langmuir turbulence parameterised in climate models MLD: VR12PAR - CNTL mean = 8.72 mse = 11.76 m

Add a bit of mixing based on the Langmuir enhancement factor in the KPP scheme ...

and things improve on average ...

but, do we really need wave models for that?

Intermediate conclusion

- Wave models are necessary and essential for certain types of coupled systems, like the IFS, because they determine the *evolution* of the weather systems
- But, wave models are necessary to *inform*, but may not be *affordable or necessary* for all sorts of coupled models where only *mean quantities* need to be correct

The complexity of the wave field ...

EKOFISK 2/4-B

Glatta

THURSDAY AND THE STORE STREET

1 toles the

The complexity of the wave field ...

The richness of the wave field ...

- cannot possibly be captured by the two-dimensional spectrum
- can we continue to parameterise the processes responsible for the air-sea interaction the way we have?
- and if so, can we do better by turning to new types of measurements?

The breaking crest length distribution of Phillips (1985)

Total length of breaking fronts per unit surface area: $L = \int \Lambda(\mathbf{c}) d\mathbf{c}$ Fraction of total surface area turned over per unit time: $R = \int c \Lambda(c) dc$ Fractional whitecap coverage: $W \propto \int c^2 \Lambda(\mathbf{c}) d\mathbf{c}$

Rate of air entrainment per unit surface area: $V_a \propto \int c^3 \Lambda(c) dc$

Momentum flux per unit surface area: $M \propto \int c^4 \Lambda(\mathbf{c}) d\mathbf{c}$ Energy dissipation per unit surface area: $E \propto \int c^5 \Lambda(\mathbf{c}) d\mathbf{c}$

Breaking crest length distribution $\Lambda(c)$ Phillips (1985)

Total length of breaking fronts per unit surface area: $L = \int \Lambda(\mathbf{c}) d\mathbf{c}$

Fraction of total surface area turned over per unit time: $R = \int c \Lambda(c) dc$

Fractional whitecap coverage: $W \propto \int c^2 \Lambda(c) dc$

Rate of air entrainment per unit surface area: $V_a \propto \int c^3 \Lambda(c) dc$

Momentum flux per unit surface area: $M \propto \int c^4 \Lambda(c) dc$

Energy dissipation per unit surface area: $E \propto \int c^5 \Lambda(c) dc$

10-

10

Ekofisk - an open-ocean wave laboratory since 1980

Ekofisk - an open-ocean wave laboratory since 1980

Stereo video (2017)

Since 2017: Stereo measurements (5 Hz)

The fifth beam of a Nortek 500 ADCP

- □ 5 minute time series of raw echosounder image
- Brighter yellow indicates stronger backscatter, bubble plumes clearly visible

April 2024: Deployment of SFY miniature wave buoys in the stereo camera footprint

- Sample rate: **52 Hz sampling rate**, filtered (FIR) and downsampled from 208 Hz input to AHRS algorithm.
- Output:
 - Absolute vertical acceleration
 - horizontal acceleration, but not oriented in fixed direction over time
- Batteries:
 - Alkaline C-cells: safer than Lithium in ocean-water.
- Transmits at configured interval, or when memory is full. I.e. every 20 minutes at 52 Hz.
- Telemetry: Cellular network, GSM, LTE.
- Georeference and time: GPS/GNSS/GLONASS
- Onboard storage: SD-card
- Cost of parts: About 2000 NOK / 200 USD.

Hardware, code and processing: <u>https://github.com/gauteh/sfy</u>

SFY: Capable of detecting individual breaking events

Sintef's Spartacus buoy equipped with telecentric lens for bubble size distribution

From telecentric images to bubble size distribution

Raw image

Conclusion

The time is ripe.

- We have the components to go and measure the properties postulated to be proportional to the momenta of Phillips' breaking crest length distribution.
- We can now combine new types of instruments in open-ocean conditions and help inform a new generation of wave models,
- but also, even more importantly, the parameterisations that need to go into coupled earth system models.